Qing Sun, JinYue Hu, RuYue Wang, ShuiXiang Guo, GeGe Zhang, Ao Lu, Xue Yang, LiNa Wang
{"title":"Bioinformatics-based screening and validation of PANoptosis-related biomarkers in periodontitis.","authors":"Qing Sun, JinYue Hu, RuYue Wang, ShuiXiang Guo, GeGe Zhang, Ao Lu, Xue Yang, LiNa Wang","doi":"10.3389/fcell.2025.1619002","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Periodontitis is the most prevalent chronic inflammatory disease affecting the periodontal tissues. PANoptosis, a recently characterized form of programmed cell death, has been implicated in various pathological processes; however, its mechanistic role in periodontitis remains unclear. This study integrates multi-omics data and machine learning approaches to systematically identify and validate key PANoptosis-related biomarkers in periodontitis.</p><p><strong>Methods: </strong>Periodontitis-related microarray datasets (GSE16134 and GSE10334) were obtained from the GEO database, and PANoptosis-related genes were retrieved from GeneCards. Differential gene expression analysis was performed using the GSE16134 dataset, followed by weighted gene co-expression network analysis (WGCNA) to identify relevant gene modules. The intersection of differentially expressed genes and WGCNA modules was used to define differentially expressed PANoptosis-related genes (PRGs). Protein-protein interaction (PPI) networks of these PRGs were constructed using the STRING database and visualized with Cytoscape. Subnetworks were identified using the MCODE plugin. Key genes were selected based on integration with rank-sum test results. Functional enrichment analysis was performed for these key genes. Machine learning algorithms were then applied to screen for potential biomarkers. Diagnostic performance was assessed using receiver operating characteristic (ROC) curves and box plots. The relationship between selected biomarkers and immune cell infiltration was explored using the CIBERSORT algorithm. Finally, RT-qPCR was conducted to validate biomarker expression in clinical gingival tissue samples.</p><p><strong>Results: </strong>Through comprehensive bioinformatics analysis and literature review, ZBP1 was identified as a PANoptosis-related biomarker in periodontitis. RT-qPCR validation demonstrated that ZBP1 expression was significantly elevated in periodontitis tissues compared to healthy periodontal tissues (P < 0.05).</p><p><strong>Conclusion: </strong>This study provides bioinformatic evidence linking PANoptosis to periodontitis. ZBP1 was identified as a key PANoptosis-related biomarker, suggesting that periodontitis may involve activation of the ZBP1-mediated PANoptosome complex.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"13 ","pages":"1619002"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222123/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2025.1619002","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Periodontitis is the most prevalent chronic inflammatory disease affecting the periodontal tissues. PANoptosis, a recently characterized form of programmed cell death, has been implicated in various pathological processes; however, its mechanistic role in periodontitis remains unclear. This study integrates multi-omics data and machine learning approaches to systematically identify and validate key PANoptosis-related biomarkers in periodontitis.
Methods: Periodontitis-related microarray datasets (GSE16134 and GSE10334) were obtained from the GEO database, and PANoptosis-related genes were retrieved from GeneCards. Differential gene expression analysis was performed using the GSE16134 dataset, followed by weighted gene co-expression network analysis (WGCNA) to identify relevant gene modules. The intersection of differentially expressed genes and WGCNA modules was used to define differentially expressed PANoptosis-related genes (PRGs). Protein-protein interaction (PPI) networks of these PRGs were constructed using the STRING database and visualized with Cytoscape. Subnetworks were identified using the MCODE plugin. Key genes were selected based on integration with rank-sum test results. Functional enrichment analysis was performed for these key genes. Machine learning algorithms were then applied to screen for potential biomarkers. Diagnostic performance was assessed using receiver operating characteristic (ROC) curves and box plots. The relationship between selected biomarkers and immune cell infiltration was explored using the CIBERSORT algorithm. Finally, RT-qPCR was conducted to validate biomarker expression in clinical gingival tissue samples.
Results: Through comprehensive bioinformatics analysis and literature review, ZBP1 was identified as a PANoptosis-related biomarker in periodontitis. RT-qPCR validation demonstrated that ZBP1 expression was significantly elevated in periodontitis tissues compared to healthy periodontal tissues (P < 0.05).
Conclusion: This study provides bioinformatic evidence linking PANoptosis to periodontitis. ZBP1 was identified as a key PANoptosis-related biomarker, suggesting that periodontitis may involve activation of the ZBP1-mediated PANoptosome complex.
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.