{"title":"MEF2C: A Novel Transcription Factor Implicated in Human Malignant Tumors.","authors":"Yining Pan, Jiayi Li, Haoran Liu, Jiayi Ma, Dongshuo Wang, Xiaolan Li, Chengfu Yuan","doi":"10.2174/0115680266359306250619210412","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Myocyte enhancer factor 2C (MEF2C) is a pivotal transcription factor that is responsible for maintaining myocyte differentiation. MEF2C is multifunctional, participating in diverse biological processes, including cardiac morphogenesis, angiogenesis, neurogenesis, and cortical development. Emerging evidence has identified MEF2C as a novel oncogene with dual regulatory functions in tumorigenesis. However, the mechanisms by which MEF2C regulates the progression of various malignant tumors are unknown. Therefore, it is crucial to further investigate the multiple signaling pathways under different expression levels of MEF2C. In this review, the expression level of MEF2C in various malignant tumors and its specific pathways are described.</p><p><strong>Methods: </strong>This review systematically summarizes and critically analyzes the current studies on MEF2C's biological function in malignant tumors by comprehensively searching them through PubMed databases.</p><p><strong>Results: </strong>MEF2C demonstrates aberrant expression patterns across multiple tumor types, spanning both solid tumors (e.g., glioma, breast cancer, hepatocellular carcinoma) and hematological malignancies (e.g., leukemia). MEF2C orchestrates multiple oncogenic processes, including tumor cell proliferation, migration, and invasion, while also modulating cancer drug resistance and systemic manifestations, like cachexia and apoptosis resistance.</p><p><strong>Conclusion: </strong>Given its multifaceted roles in tumor initiation, progression, and clinic, MEF2C has the potential to serve as both a diagnostic biomarker and a therapeutic target for various malignancies.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266359306250619210412","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Myocyte enhancer factor 2C (MEF2C) is a pivotal transcription factor that is responsible for maintaining myocyte differentiation. MEF2C is multifunctional, participating in diverse biological processes, including cardiac morphogenesis, angiogenesis, neurogenesis, and cortical development. Emerging evidence has identified MEF2C as a novel oncogene with dual regulatory functions in tumorigenesis. However, the mechanisms by which MEF2C regulates the progression of various malignant tumors are unknown. Therefore, it is crucial to further investigate the multiple signaling pathways under different expression levels of MEF2C. In this review, the expression level of MEF2C in various malignant tumors and its specific pathways are described.
Methods: This review systematically summarizes and critically analyzes the current studies on MEF2C's biological function in malignant tumors by comprehensively searching them through PubMed databases.
Results: MEF2C demonstrates aberrant expression patterns across multiple tumor types, spanning both solid tumors (e.g., glioma, breast cancer, hepatocellular carcinoma) and hematological malignancies (e.g., leukemia). MEF2C orchestrates multiple oncogenic processes, including tumor cell proliferation, migration, and invasion, while also modulating cancer drug resistance and systemic manifestations, like cachexia and apoptosis resistance.
Conclusion: Given its multifaceted roles in tumor initiation, progression, and clinic, MEF2C has the potential to serve as both a diagnostic biomarker and a therapeutic target for various malignancies.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.