Sonia Kumari, Vruksha Arvind Raut, M Elizabeth Sobhia
{"title":"Leveraging Tubulin Isotype Structural Differences to Design Less Hematotoxic β5 Selective Covalent Inhibitors for NSCLC.","authors":"Sonia Kumari, Vruksha Arvind Raut, M Elizabeth Sobhia","doi":"10.2174/0115680266367194250619053553","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>This study aims to discover and design β-5 tubulin-specific covalent inhibitors for non-small cell lung cancer (NSCLC) that can minimize hematotoxicity, a major side effect of current microtubule-targeting agents (MTAs).</p><p><strong>Background: </strong>Current microtubule-targeting drugs cause toxicities such as hematotoxicity and multidrug resistance (MDR). The colchicine binding site in β-5 has Cys-239, whereas β-1 has Ser- 239, allowing selective inhibition based on the reactivity differences for covalent reactions.</p><p><strong>Methods: </strong>β-5 and β-1 tubulin models were developed, and covalent docking and virtual screening were conducted to identify selective inhibitors targeting the β-5 tubulin colchicine binding site. Twenty hits were selected, and a comparative study was carried out between β-5 and β-1 to evaluate the selectivity and binding potential of the inhibitors.</p><p><strong>Results: </strong>Among the 20 identified hits, four compounds demonstrated selective inhibition of β-5 tubulin, exhibiting stronger binding affinity for β-5 over β-1 tubulin. Molecular dynamics studies further confirmed their stability and enhanced binding, highlighting their potential as promising candidates for further drug development.</p><p><strong>Conclusion: </strong>The study identified four novel β-5 tubulin-specific covalent inhibitors that may act as potential therapeutic agents for NSCLC, with the possibility of reduced hematotoxicity. These findings suggest that selective inhibition could help minimize side effects, addressing a critical need in cancer treatment.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266367194250619053553","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: This study aims to discover and design β-5 tubulin-specific covalent inhibitors for non-small cell lung cancer (NSCLC) that can minimize hematotoxicity, a major side effect of current microtubule-targeting agents (MTAs).
Background: Current microtubule-targeting drugs cause toxicities such as hematotoxicity and multidrug resistance (MDR). The colchicine binding site in β-5 has Cys-239, whereas β-1 has Ser- 239, allowing selective inhibition based on the reactivity differences for covalent reactions.
Methods: β-5 and β-1 tubulin models were developed, and covalent docking and virtual screening were conducted to identify selective inhibitors targeting the β-5 tubulin colchicine binding site. Twenty hits were selected, and a comparative study was carried out between β-5 and β-1 to evaluate the selectivity and binding potential of the inhibitors.
Results: Among the 20 identified hits, four compounds demonstrated selective inhibition of β-5 tubulin, exhibiting stronger binding affinity for β-5 over β-1 tubulin. Molecular dynamics studies further confirmed their stability and enhanced binding, highlighting their potential as promising candidates for further drug development.
Conclusion: The study identified four novel β-5 tubulin-specific covalent inhibitors that may act as potential therapeutic agents for NSCLC, with the possibility of reduced hematotoxicity. These findings suggest that selective inhibition could help minimize side effects, addressing a critical need in cancer treatment.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.