Quantitative CT Imaging in Chronic Obstructive Pulmonary Disease.

IF 1.8 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Sohee Park, Sang Min Lee, Hye Jeon Hwang, Sang Young Oh, Jooae Choe, Joon Beom Seo
{"title":"Quantitative CT Imaging in Chronic Obstructive Pulmonary Disease.","authors":"Sohee Park, Sang Min Lee, Hye Jeon Hwang, Sang Young Oh, Jooae Choe, Joon Beom Seo","doi":"10.1093/bjr/tqaf105","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic obstructive pulmonary disease (COPD) is a highly heterogeneous condition characterized by diverse pulmonary and extrapulmonary manifestations. Efforts to quantify its various components using CT imaging have advanced, aiming for more precise, objective, and reproducible assessment and management. Beyond emphysema and small airway disease, the two major components of COPD, CT quantification enables the evaluation of pulmonary vascular alteration, ventilation-perfusion mismatches, fissure completeness, and extrapulmonary features such as altered body composition, osteoporosis, and atherosclerosis. Recent advancements, including the application of deep learning techniques, have facilitated fully automated segmentation and quantification of CT parameters, while innovations such as image standardization hold promise for enhancing clinical applicability. Numerous studies have reported associations between quantitative CT parameters and clinical or physiologic outcomes in patients with COPD. However, barriers remain to the routine implementation of these technologies in clinical practice. This review highlights recent research on COPD quantification, explores advances in technology, and also discusses current challenges and potential solutions for improving quantification methods.</p>","PeriodicalId":9306,"journal":{"name":"British Journal of Radiology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/bjr/tqaf105","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic obstructive pulmonary disease (COPD) is a highly heterogeneous condition characterized by diverse pulmonary and extrapulmonary manifestations. Efforts to quantify its various components using CT imaging have advanced, aiming for more precise, objective, and reproducible assessment and management. Beyond emphysema and small airway disease, the two major components of COPD, CT quantification enables the evaluation of pulmonary vascular alteration, ventilation-perfusion mismatches, fissure completeness, and extrapulmonary features such as altered body composition, osteoporosis, and atherosclerosis. Recent advancements, including the application of deep learning techniques, have facilitated fully automated segmentation and quantification of CT parameters, while innovations such as image standardization hold promise for enhancing clinical applicability. Numerous studies have reported associations between quantitative CT parameters and clinical or physiologic outcomes in patients with COPD. However, barriers remain to the routine implementation of these technologies in clinical practice. This review highlights recent research on COPD quantification, explores advances in technology, and also discusses current challenges and potential solutions for improving quantification methods.

慢性阻塞性肺疾病的定量CT成像。
慢性阻塞性肺疾病(COPD)是一种高度异质性的疾病,其特征是多种肺部和肺外表现。利用CT成像对其各个组成部分进行量化的努力已经取得进展,旨在实现更精确、客观和可重复的评估和管理。除了肺气肿和小气道疾病这两个COPD的主要组成部分外,CT量化还可以评估肺血管改变、通气-灌注不匹配、裂隙完整性和肺外特征,如身体成分改变、骨质疏松和动脉粥样硬化。最近的进步,包括深度学习技术的应用,促进了CT参数的全自动分割和量化,而图像标准化等创新则有望提高临床适用性。大量研究报道了定量CT参数与COPD患者临床或生理结果之间的关联。然而,这些技术在临床实践中的常规实施仍然存在障碍。本综述重点介绍了COPD量化的最新研究,探讨了技术进展,并讨论了当前的挑战和改进量化方法的潜在解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
British Journal of Radiology
British Journal of Radiology 医学-核医学
CiteScore
5.30
自引率
3.80%
发文量
330
审稿时长
2-4 weeks
期刊介绍: BJR is the international research journal of the British Institute of Radiology and is the oldest scientific journal in the field of radiology and related sciences. Dating back to 1896, BJR’s history is radiology’s history, and the journal has featured some landmark papers such as the first description of Computed Tomography "Computerized transverse axial tomography" by Godfrey Hounsfield in 1973. A valuable historical resource, the complete BJR archive has been digitized from 1896. Quick Facts: - 2015 Impact Factor – 1.840 - Receipt to first decision – average of 6 weeks - Acceptance to online publication – average of 3 weeks - ISSN: 0007-1285 - eISSN: 1748-880X Open Access option
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信