Dual Structure Reinforces Interfacial Polarized MXene/PVDF-TrFE Piezoelectric Nanocomposite for Pressure Monitoring.

IF 26.6 1区 材料科学 Q1 Engineering
Yong Ao, Long Jin, Shenglong Wang, Bolin Lan, Guo Tian, Tianpei Xu, Longchao Huang, Zihan Wang, Yue Sun, Tao Yang, Weili Deng, Fan Yang, Weiqing Yang
{"title":"Dual Structure Reinforces Interfacial Polarized MXene/PVDF-TrFE Piezoelectric Nanocomposite for Pressure Monitoring.","authors":"Yong Ao, Long Jin, Shenglong Wang, Bolin Lan, Guo Tian, Tianpei Xu, Longchao Huang, Zihan Wang, Yue Sun, Tao Yang, Weili Deng, Fan Yang, Weiqing Yang","doi":"10.1007/s40820-025-01839-5","DOIUrl":null,"url":null,"abstract":"<p><p>The emerging interfacial polarization strategy exhibits applicative potential in piezoelectric enhancement. However, there is an ongoing effort to address the inherent limitations arising from charge bridging phenomena and stochastic interface disorder that plague the improvement of piezoelectric performance. Here, we report a dual structure reinforced MXene/PVDF-TrFE piezoelectric composite, whose piezoelectricity is enhanced under the coupling effect of interfacial polarization and structural design. Synergistically, molecular dynamics simulations, density functional theory calculations and experimental validation revealed the details of interfacial interactions, which promotes the net spontaneous polarization of PVDF-TrFE from the 0.56 to 31.41 Debye. The oriented MXene distribution and porous structure not only tripled the piezoelectric response but also achieved an eightfold increase in sensitivity within the low-pressure region, along with demonstrating cyclic stability exceeding 20,000 cycles. The properties reinforcement originating from dual structure is elucidated through the finite element simulation and experimental validation. Attributed to the excellent piezoelectric response and deep learning algorithm, the sensor can effectively recognize the signals of artery pulse and finger flexion. Finally, a 3 × 3 sensor array is fabricated to monitor the pressure distribution wirelessly. This study provides an innovative methodology for reinforcing interfacial polarized piezoelectric materials and insight into structural designs.</p>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":"320"},"PeriodicalIF":26.6000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227402/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40820-025-01839-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The emerging interfacial polarization strategy exhibits applicative potential in piezoelectric enhancement. However, there is an ongoing effort to address the inherent limitations arising from charge bridging phenomena and stochastic interface disorder that plague the improvement of piezoelectric performance. Here, we report a dual structure reinforced MXene/PVDF-TrFE piezoelectric composite, whose piezoelectricity is enhanced under the coupling effect of interfacial polarization and structural design. Synergistically, molecular dynamics simulations, density functional theory calculations and experimental validation revealed the details of interfacial interactions, which promotes the net spontaneous polarization of PVDF-TrFE from the 0.56 to 31.41 Debye. The oriented MXene distribution and porous structure not only tripled the piezoelectric response but also achieved an eightfold increase in sensitivity within the low-pressure region, along with demonstrating cyclic stability exceeding 20,000 cycles. The properties reinforcement originating from dual structure is elucidated through the finite element simulation and experimental validation. Attributed to the excellent piezoelectric response and deep learning algorithm, the sensor can effectively recognize the signals of artery pulse and finger flexion. Finally, a 3 × 3 sensor array is fabricated to monitor the pressure distribution wirelessly. This study provides an innovative methodology for reinforcing interfacial polarized piezoelectric materials and insight into structural designs.

双结构增强界面极化MXene/PVDF-TrFE压电纳米复合材料的压力监测。
新兴的界面极化策略在压电增强方面具有应用潜力。然而,人们一直在努力解决电荷桥接现象和随机界面紊乱所带来的固有限制,这些限制困扰着压电性能的提高。本文报道了一种双结构增强MXene/PVDF-TrFE压电复合材料,其压电性在界面极化和结构设计的耦合作用下得到增强。协同作用下,分子动力学模拟、密度泛函理论计算和实验验证揭示了界面相互作用的细节,使PVDF-TrFE的净自发极化从0.56 Debye提高到31.41 Debye。定向MXene分布和多孔结构不仅使压电响应增加了两倍,而且在低压区域内的灵敏度增加了八倍,并且表现出超过20,000次循环的循环稳定性。通过有限元模拟和实验验证,阐明了由二元结构引起的性能增强。由于优异的压电响应和深度学习算法,传感器可以有效识别动脉脉搏和手指屈曲信号。最后,制作了一个3 × 3传感器阵列,用于无线监测压力分布。本研究为增强界面极化压电材料提供了一种创新的方法,并为结构设计提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信