Humidity sensors based on surface-functionalized tunable photonic crystal grating.

IF 6.1 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Talanta Pub Date : 2026-01-01 Epub Date: 2025-06-26 DOI:10.1016/j.talanta.2025.128521
Hao Cui, Dingwen Hu, Tao Yang, Chan Huang, Zongyin Yang, Shurong Dong
{"title":"Humidity sensors based on surface-functionalized tunable photonic crystal grating.","authors":"Hao Cui, Dingwen Hu, Tao Yang, Chan Huang, Zongyin Yang, Shurong Dong","doi":"10.1016/j.talanta.2025.128521","DOIUrl":null,"url":null,"abstract":"<p><p>Photonic crystal (PC)-based humidity sensors detect changes in humidity using periodic structural color variations and have significant potential in the humidity detection field. However, current technologies typically rely on observing these structural color changes with the human eye. The human eye has limited color discrimination, thus resulting in insufficient detection accuracy. Meanwhile, viewing angles and ambient lighting can also disrupt observations. Here, we propose a humidity sensor based on surface-functionalized tunable PC grating. The tunable PC grating consists of a 600 nm polystyrene (PS) microsphere PC and a humidity-sensitive hydrogel. As ambient humidity increases, the hydrophilic amide groups (-CONH<sub>2</sub>) inside the hydrogel interact with the hydrogen bonds between water molecules and triggers hydrogel swelling, exerts interfacial stress on the PS microsphere lattice, thus expanding the lattice spacing of the PS microspheres and causing a red shift in the reflected wavelength. Integrating the surface-functionalized tunable PC grating into a Czerny-Turner (C-T) optical system enables us to directly translate humidity into precise spectral shifts, overcoming the limitations of human eye-based observations. Experimental results demonstrate a strong linear response over the range of 24-94 % relative humidity (RH), as well as excellent repeatability and long-term stability. We provide an innovative solution for high-precision optical humidity sensing.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"296 ","pages":"128521"},"PeriodicalIF":6.1000,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.128521","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photonic crystal (PC)-based humidity sensors detect changes in humidity using periodic structural color variations and have significant potential in the humidity detection field. However, current technologies typically rely on observing these structural color changes with the human eye. The human eye has limited color discrimination, thus resulting in insufficient detection accuracy. Meanwhile, viewing angles and ambient lighting can also disrupt observations. Here, we propose a humidity sensor based on surface-functionalized tunable PC grating. The tunable PC grating consists of a 600 nm polystyrene (PS) microsphere PC and a humidity-sensitive hydrogel. As ambient humidity increases, the hydrophilic amide groups (-CONH2) inside the hydrogel interact with the hydrogen bonds between water molecules and triggers hydrogel swelling, exerts interfacial stress on the PS microsphere lattice, thus expanding the lattice spacing of the PS microspheres and causing a red shift in the reflected wavelength. Integrating the surface-functionalized tunable PC grating into a Czerny-Turner (C-T) optical system enables us to directly translate humidity into precise spectral shifts, overcoming the limitations of human eye-based observations. Experimental results demonstrate a strong linear response over the range of 24-94 % relative humidity (RH), as well as excellent repeatability and long-term stability. We provide an innovative solution for high-precision optical humidity sensing.

基于表面功能化可调谐光子晶体光栅的湿度传感器。
基于光子晶体(PC)的湿度传感器利用周期性的结构颜色变化来检测湿度的变化,在湿度检测领域具有重要的发展潜力。然而,目前的技术通常依赖于用人眼观察这些结构颜色的变化。人眼的辨色能力有限,导致检测精度不足。同时,视角和环境光线也会干扰观察。本文提出了一种基于表面功能化可调PC光栅的湿度传感器。可调PC光栅由600 nm聚苯乙烯(PS)微球PC和湿度敏感水凝胶组成。随着环境湿度的增加,水凝胶内部的亲水酰胺基团(-CONH2)与水分子间的氢键相互作用,引发水凝胶膨胀,对PS微球晶格施加界面应力,从而扩大PS微球的晶格间距,引起反射波长的红移。将表面功能化的可调谐PC光栅集成到切尔尼-特纳(C-T)光学系统中,使我们能够直接将湿度转化为精确的光谱位移,克服了人眼观测的局限性。实验结果表明,在24- 94%相对湿度(RH)范围内具有较强的线性响应,具有良好的重复性和长期稳定性。我们为高精度光学湿度传感提供创新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信