Rory L Cooper, Ebrahim Jahanbakhsh, Michel C Milinkovitch
{"title":"Chemical and mechanical patterning of tortoise skin scales occur in different regions of the head.","authors":"Rory L Cooper, Ebrahim Jahanbakhsh, Michel C Milinkovitch","doi":"10.1016/j.isci.2025.112684","DOIUrl":null,"url":null,"abstract":"<p><p>Vertebrate skin appendages are diverse micro-organs such as scales, feathers, and hair. These units typically develop from placodes, whose spatial patterning involves conserved chemical reaction-diffusion dynamics. Crocodile head scales are a spectacular exception to this paradigm, as they instead arise from a mechanically dominated process of compressive folding driven by constrained skin growth. Here, we reveal that chemical versus mechanical processes pattern tortoise scales in different regions of their head. Indeed, we show that placode-derived scales emerge across the peripheral head surfaces while remaining absent from the central dorsal region where scales subsequently form through a mechanical folding process. Using light sheet microscopy, we build a three-dimensional mechanical model that qualitatively recapitulates the diversity of scale patterns observed in this central head region in different tortoise species. Overall, our analyses indicate that mechanical head-scale patterning likely arose before the divergence between Testudinata and Archosauria, and was subsequently lost in birds.</p>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 6","pages":"112684"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12225933/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.isci.2025.112684","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/20 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Vertebrate skin appendages are diverse micro-organs such as scales, feathers, and hair. These units typically develop from placodes, whose spatial patterning involves conserved chemical reaction-diffusion dynamics. Crocodile head scales are a spectacular exception to this paradigm, as they instead arise from a mechanically dominated process of compressive folding driven by constrained skin growth. Here, we reveal that chemical versus mechanical processes pattern tortoise scales in different regions of their head. Indeed, we show that placode-derived scales emerge across the peripheral head surfaces while remaining absent from the central dorsal region where scales subsequently form through a mechanical folding process. Using light sheet microscopy, we build a three-dimensional mechanical model that qualitatively recapitulates the diversity of scale patterns observed in this central head region in different tortoise species. Overall, our analyses indicate that mechanical head-scale patterning likely arose before the divergence between Testudinata and Archosauria, and was subsequently lost in birds.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.