{"title":"Long-term farmland abandonments remarkably increased the phytolith carbon sequestration in soil.","authors":"Linjiao Wang, Xiang Gao, Maoyin Sheng","doi":"10.1186/s13021-025-00312-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Phytolith-occluded organic carbon (PhytOC) is an important mechanism of long-term stable carbon sinks in terrestrial ecosystems. Farmland abandonment is a widespread land use change in the process of urbanization and industrialization and is still ongoing. Farmland abandonment can significantly affect soil carbon cycling. To elucidate the effects of farmland abandonment on soil PhytOC accumulation, in the present study, corn fields abandoned for 0 to 30 years ago in the mountainous areas of southern China were selected as the research objects. The change trends, influencing factors, and driving mechanisms of soil PhytOC accumulation during the abandonment process were studied.</p><p><strong>Results: </strong>The following results were obtained: (1) The range of PhytOC content and storage of the 0-15 cm soil profile for both active and abandoned corn fields was 0.39-1.49 g·kg<sup>- 1</sup> and 0.27-0.83 t·hm<sup>- 2</sup>, respectively. (2) There was a notable enhancement in soil PhytOC accumulation as the duration of abandonment lengthened. In particular, after 30 years of abandonment, soil PhytOC accumulation rose significantly. (3) Abandonment noticeably altered the contents and ratios of soil nutrients of C, N, P and Si, along with key soil enzyme activities such as urease, sucrase, alkaline phosphatase, and catalase. (4) In the context of corn field abandonment, increase in soil PhytOC was primarily attributed to modifications in PhytOC inputs due to variations in surface vegetation cover. The impact of soil environment alterations resulting from abandonment on PhytOC decomposition was less pronounced.</p><p><strong>Conclusions: </strong>These findings are instrumental for accurately assessing the carbon sequestration potential of farmland abandonment and for developing regional carbon management strategies based on such practices.</p>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"20 1","pages":"21"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s13021-025-00312-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Phytolith-occluded organic carbon (PhytOC) is an important mechanism of long-term stable carbon sinks in terrestrial ecosystems. Farmland abandonment is a widespread land use change in the process of urbanization and industrialization and is still ongoing. Farmland abandonment can significantly affect soil carbon cycling. To elucidate the effects of farmland abandonment on soil PhytOC accumulation, in the present study, corn fields abandoned for 0 to 30 years ago in the mountainous areas of southern China were selected as the research objects. The change trends, influencing factors, and driving mechanisms of soil PhytOC accumulation during the abandonment process were studied.
Results: The following results were obtained: (1) The range of PhytOC content and storage of the 0-15 cm soil profile for both active and abandoned corn fields was 0.39-1.49 g·kg- 1 and 0.27-0.83 t·hm- 2, respectively. (2) There was a notable enhancement in soil PhytOC accumulation as the duration of abandonment lengthened. In particular, after 30 years of abandonment, soil PhytOC accumulation rose significantly. (3) Abandonment noticeably altered the contents and ratios of soil nutrients of C, N, P and Si, along with key soil enzyme activities such as urease, sucrase, alkaline phosphatase, and catalase. (4) In the context of corn field abandonment, increase in soil PhytOC was primarily attributed to modifications in PhytOC inputs due to variations in surface vegetation cover. The impact of soil environment alterations resulting from abandonment on PhytOC decomposition was less pronounced.
Conclusions: These findings are instrumental for accurately assessing the carbon sequestration potential of farmland abandonment and for developing regional carbon management strategies based on such practices.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.