One-Size-Fits-All: A Universal Binding Site for Single-Layer Metal Cluster Self-Assembly.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Emerson C Kohlrausch, Sadegh Ghaderzadeh, Gazi N Aliev, Ilya Popov, Fatmah Saad, Eman Alharbi, Quentin M Ramasse, Graham A Rance, Mohsen Danaie, Madasamy Thangamuthu, Mathew Young, Richard Plummer, David J Morgan, Wolfgang Theis, Elena Besley, Andrei N Khlobystov, Jesum Alves Fernandes
{"title":"One-Size-Fits-All: A Universal Binding Site for Single-Layer Metal Cluster Self-Assembly.","authors":"Emerson C Kohlrausch, Sadegh Ghaderzadeh, Gazi N Aliev, Ilya Popov, Fatmah Saad, Eman Alharbi, Quentin M Ramasse, Graham A Rance, Mohsen Danaie, Madasamy Thangamuthu, Mathew Young, Richard Plummer, David J Morgan, Wolfgang Theis, Elena Besley, Andrei N Khlobystov, Jesum Alves Fernandes","doi":"10.1002/advs.202508034","DOIUrl":null,"url":null,"abstract":"<p><p>2D metal clusters maximize atom-surface interactions, making them highly attractive for energy and electronic technologies. However, their fabrication remains extremely challenging because they are thermodynamically unstable. Current methods are limited to element-specific binding sites or confinement of metals between layers, with no universal strategy achieved to date. Here, a general approach is presented that uses vacancy defects as universal binding sites to fabricate single-layer metal clusters (SLMC). It is demonstrated that the density of these vacancies governs metal atom diffusion and bonding to the surface, overriding the metal's physicochemical properties. Crucially, the reactivity of vacancy sites must be preserved prior to metal deposition to enable SLMC formation. This strategy is demonstrated across 21 elements and their mixtures, yielding SLMC with areal densities up to 4.3 atoms∙nm⁻<sup>2</sup>, without heteroatom doping, while maintaining high thermal, environmental, and electrochemical stability. These findings provide a universal strategy for stabilizing SLMC, eliminating the need for element-specific synthesis and metal confinement protocols and offering a strategy for efficiently utilizing metals.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e08034"},"PeriodicalIF":14.3000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202508034","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

2D metal clusters maximize atom-surface interactions, making them highly attractive for energy and electronic technologies. However, their fabrication remains extremely challenging because they are thermodynamically unstable. Current methods are limited to element-specific binding sites or confinement of metals between layers, with no universal strategy achieved to date. Here, a general approach is presented that uses vacancy defects as universal binding sites to fabricate single-layer metal clusters (SLMC). It is demonstrated that the density of these vacancies governs metal atom diffusion and bonding to the surface, overriding the metal's physicochemical properties. Crucially, the reactivity of vacancy sites must be preserved prior to metal deposition to enable SLMC formation. This strategy is demonstrated across 21 elements and their mixtures, yielding SLMC with areal densities up to 4.3 atoms∙nm⁻2, without heteroatom doping, while maintaining high thermal, environmental, and electrochemical stability. These findings provide a universal strategy for stabilizing SLMC, eliminating the need for element-specific synthesis and metal confinement protocols and offering a strategy for efficiently utilizing metals.

一刀切:单层金属簇自组装的通用结合位点。
二维金属团簇最大限度地发挥了原子表面相互作用,使它们对能源和电子技术具有很高的吸引力。然而,它们的制造仍然极具挑战性,因为它们在热力学上不稳定。目前的方法仅限于元素特定的结合位点或层间金属的限制,迄今为止还没有实现通用的策略。本文提出了一种利用空位缺陷作为通用结合位点来制备单层金属团簇(SLMC)的一般方法。结果表明,这些空位的密度决定了金属原子的扩散和与表面的结合,而不是金属的物理化学性质。至关重要的是,在金属沉积之前必须保持空位的反应性,以使SLMC形成。这种策略在21种元素及其混合物中得到了证明,得到的SLMC面密度高达4.3原子∙nm⁻2,没有杂原子掺杂,同时保持高热、环境和电化学稳定性。这些发现为稳定SLMC提供了一种通用策略,消除了对特定元素合成和金属约束协议的需求,并提供了一种有效利用金属的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信