Quantifying mechanical opacity as a novel indicator for single-cell phenotyping via integrated dynamic mechanical compression and impedance flow cytometry.

IF 5.4 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
Lab on a Chip Pub Date : 2025-07-04 DOI:10.1039/d5lc00489f
Shan-Shan Li, Chun-Dong Xue, Si-Yu Hu, Yong-Jiang Li, Xu-Qu Hu, Zhuo Yang, Kai-Rong Qin
{"title":"Quantifying mechanical opacity as a novel indicator for single-cell phenotyping <i>via</i> integrated dynamic mechanical compression and impedance flow cytometry.","authors":"Shan-Shan Li, Chun-Dong Xue, Si-Yu Hu, Yong-Jiang Li, Xu-Qu Hu, Zhuo Yang, Kai-Rong Qin","doi":"10.1039/d5lc00489f","DOIUrl":null,"url":null,"abstract":"<p><p>A comprehensive understanding of cellular mechanical heterogeneity is essential for identifying phenotypic variations. Impedance flow cytometry offers a high-throughput, label-free approach to assess single-cell electrical properties, yet current methods focus primarily on undeformed cells and overlook mechanical perturbations that may alter cytoskeletal structure and membrane behavior. Here, we present an integrated system that combines controlled mechanical compression with impedance measurement to quantify mechanical opacity-an electrical metric reflecting membrane permeability under dynamic deformation. This parameter correlates with cytoskeletal integrity and reveals how mechanical stimuli influence electrical responses. Theoretical modeling shows that membrane permittivity and conductivity critically shape frequency-dependent impedance, supporting the use of dual-frequency (500 kHz and 5 MHz) measurements to probe both intra- and extracellular properties. We define a four-parameter feature set (<i>R</i><sub>squ</sub>, <i>R</i><sub>sti1</sub>, <i>R</i><sub>sti2</sub>, <i>R</i><sub>relax</sub>) to capture impedance changes during deformation and relaxation, offering a compact and interpretable mechanical signature. Using this system, we demonstrate distinct mechanical opacity profiles among three human cancer cell lines (HeLa, SW1990, BxPC-3), reflecting their inherent biomechanical differences. Fluorescence assays confirm that lower mechanical opacity corresponds to increased membrane permeability, linking electrical measurements to underlying structural changes. Our work establishes mechanical opacity as a dynamic, label-free marker for single-cell mechanics, bridging mechanical stimulation and electrical detection. This approach expands the capability of impedance flow cytometry for applications in cell classification, drug screening, and disease diagnostics.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5lc00489f","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

A comprehensive understanding of cellular mechanical heterogeneity is essential for identifying phenotypic variations. Impedance flow cytometry offers a high-throughput, label-free approach to assess single-cell electrical properties, yet current methods focus primarily on undeformed cells and overlook mechanical perturbations that may alter cytoskeletal structure and membrane behavior. Here, we present an integrated system that combines controlled mechanical compression with impedance measurement to quantify mechanical opacity-an electrical metric reflecting membrane permeability under dynamic deformation. This parameter correlates with cytoskeletal integrity and reveals how mechanical stimuli influence electrical responses. Theoretical modeling shows that membrane permittivity and conductivity critically shape frequency-dependent impedance, supporting the use of dual-frequency (500 kHz and 5 MHz) measurements to probe both intra- and extracellular properties. We define a four-parameter feature set (Rsqu, Rsti1, Rsti2, Rrelax) to capture impedance changes during deformation and relaxation, offering a compact and interpretable mechanical signature. Using this system, we demonstrate distinct mechanical opacity profiles among three human cancer cell lines (HeLa, SW1990, BxPC-3), reflecting their inherent biomechanical differences. Fluorescence assays confirm that lower mechanical opacity corresponds to increased membrane permeability, linking electrical measurements to underlying structural changes. Our work establishes mechanical opacity as a dynamic, label-free marker for single-cell mechanics, bridging mechanical stimulation and electrical detection. This approach expands the capability of impedance flow cytometry for applications in cell classification, drug screening, and disease diagnostics.

Abstract Image

通过综合动态机械压缩和阻抗流式细胞术定量机械不透明度作为单细胞表型的新指标。
对细胞力学异质性的全面了解对于确定表型变异是必不可少的。阻抗流式细胞术提供了一种高通量、无标记的方法来评估单细胞的电学特性,但目前的方法主要集中在未变形的细胞上,而忽略了可能改变细胞骨架结构和膜行为的机械扰动。在这里,我们提出了一个集成系统,将受控机械压缩与阻抗测量相结合,以量化机械不透明度-反映动态变形下膜渗透率的电学度量。该参数与细胞骨架完整性相关,并揭示机械刺激如何影响电反应。理论建模表明,膜介电常数和电导率对频率相关阻抗具有重要影响,支持使用双频(500 kHz和5 MHz)测量来探测细胞内和细胞外特性。我们定义了一个四参数特征集(Rsqu, Rsti1, Rsti2, Rrelax)来捕捉变形和松弛过程中的阻抗变化,提供紧凑且可解释的力学特征。利用该系统,我们展示了三种人类癌细胞系(HeLa, SW1990, BxPC-3)之间不同的机械不透明度特征,反映了它们内在的生物力学差异。荧光分析证实,较低的机械不透明度对应于膜通透性的增加,将电测量与潜在的结构变化联系起来。我们的工作将机械不透明度建立为单细胞力学的动态,无标签标记,连接机械刺激和电检测。这种方法扩展了阻抗流式细胞术在细胞分类、药物筛选和疾病诊断方面的应用能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信