Kanga Marius N'Gatta, Edja Florentin Assanvo, Joelle El Hayek, Nathalie Masquelez, Pelagie Kamgang Syapnjeu, Stefano Deabate, Valérie Bonniol, Laurence Soussan, Camilo Zamora-Ledezma, Jeevithan Elango, Valérie Flaud, David Boa, Chrystelle Salameh
{"title":"3D-Printed Polycaprolactone Scaffolds Reinforced with Cellulose Nanocrystals and Silver Nanoparticles for Bone Tissue Engineering.","authors":"Kanga Marius N'Gatta, Edja Florentin Assanvo, Joelle El Hayek, Nathalie Masquelez, Pelagie Kamgang Syapnjeu, Stefano Deabate, Valérie Bonniol, Laurence Soussan, Camilo Zamora-Ledezma, Jeevithan Elango, Valérie Flaud, David Boa, Chrystelle Salameh","doi":"10.1021/acsami.5c06504","DOIUrl":null,"url":null,"abstract":"<p><p>Cellulose nanocrystals (CNC) have garnered significant attention in pharmaceutical and medical applications due to their biocompatibility, biodegradability, renewability, and strong surface reactivity. In this study, we designed 3D-printed bioactive composite scaffolds via fused deposition modeling (FDM), incorporating polycaprolactone (PCL), CNC derived from Ficus thonningii bark, and silver nanoparticles (AgNps) synthesized through <i>in situ</i> reduction of silver nitrate AgNO<sub>3</sub>. Energy-dispersive X-ray spectroscopy (EDX) confirmed AgNps incorporation, while scanning electron microscopy (SEM) revealed a highly porous, interconnected structure. The inclusion of CNC and AgNps enhanced PCL's biodegradability, hydrophilicity, and hydroxyapatite nucleation, all crucial for osteoconductivity. The scaffolds demonstrated mechanical properties suitable for bone regeneration, effective antibacterial activity against <i>Escherichia coli</i>, and cytocompatibility with Mesenchymal Stem Cells (MSCs). These findings highlight the potential of PCL/CNCx/AgNps scaffolds as advanced biomaterials for bone tissue engineering, since they offer enhanced resorbability, antibacterial protection, and structural adaptability.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c06504","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellulose nanocrystals (CNC) have garnered significant attention in pharmaceutical and medical applications due to their biocompatibility, biodegradability, renewability, and strong surface reactivity. In this study, we designed 3D-printed bioactive composite scaffolds via fused deposition modeling (FDM), incorporating polycaprolactone (PCL), CNC derived from Ficus thonningii bark, and silver nanoparticles (AgNps) synthesized through in situ reduction of silver nitrate AgNO3. Energy-dispersive X-ray spectroscopy (EDX) confirmed AgNps incorporation, while scanning electron microscopy (SEM) revealed a highly porous, interconnected structure. The inclusion of CNC and AgNps enhanced PCL's biodegradability, hydrophilicity, and hydroxyapatite nucleation, all crucial for osteoconductivity. The scaffolds demonstrated mechanical properties suitable for bone regeneration, effective antibacterial activity against Escherichia coli, and cytocompatibility with Mesenchymal Stem Cells (MSCs). These findings highlight the potential of PCL/CNCx/AgNps scaffolds as advanced biomaterials for bone tissue engineering, since they offer enhanced resorbability, antibacterial protection, and structural adaptability.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.