3D-Printed Polycaprolactone Scaffolds Reinforced with Cellulose Nanocrystals and Silver Nanoparticles for Bone Tissue Engineering.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kanga Marius N'Gatta, Edja Florentin Assanvo, Joelle El Hayek, Nathalie Masquelez, Pelagie Kamgang Syapnjeu, Stefano Deabate, Valérie Bonniol, Laurence Soussan, Camilo Zamora-Ledezma, Jeevithan Elango, Valérie Flaud, David Boa, Chrystelle Salameh
{"title":"3D-Printed Polycaprolactone Scaffolds Reinforced with Cellulose Nanocrystals and Silver Nanoparticles for Bone Tissue Engineering.","authors":"Kanga Marius N'Gatta, Edja Florentin Assanvo, Joelle El Hayek, Nathalie Masquelez, Pelagie Kamgang Syapnjeu, Stefano Deabate, Valérie Bonniol, Laurence Soussan, Camilo Zamora-Ledezma, Jeevithan Elango, Valérie Flaud, David Boa, Chrystelle Salameh","doi":"10.1021/acsami.5c06504","DOIUrl":null,"url":null,"abstract":"<p><p>Cellulose nanocrystals (CNC) have garnered significant attention in pharmaceutical and medical applications due to their biocompatibility, biodegradability, renewability, and strong surface reactivity. In this study, we designed 3D-printed bioactive composite scaffolds via fused deposition modeling (FDM), incorporating polycaprolactone (PCL), CNC derived from Ficus thonningii bark, and silver nanoparticles (AgNps) synthesized through <i>in situ</i> reduction of silver nitrate AgNO<sub>3</sub>. Energy-dispersive X-ray spectroscopy (EDX) confirmed AgNps incorporation, while scanning electron microscopy (SEM) revealed a highly porous, interconnected structure. The inclusion of CNC and AgNps enhanced PCL's biodegradability, hydrophilicity, and hydroxyapatite nucleation, all crucial for osteoconductivity. The scaffolds demonstrated mechanical properties suitable for bone regeneration, effective antibacterial activity against <i>Escherichia coli</i>, and cytocompatibility with Mesenchymal Stem Cells (MSCs). These findings highlight the potential of PCL/CNCx/AgNps scaffolds as advanced biomaterials for bone tissue engineering, since they offer enhanced resorbability, antibacterial protection, and structural adaptability.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c06504","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cellulose nanocrystals (CNC) have garnered significant attention in pharmaceutical and medical applications due to their biocompatibility, biodegradability, renewability, and strong surface reactivity. In this study, we designed 3D-printed bioactive composite scaffolds via fused deposition modeling (FDM), incorporating polycaprolactone (PCL), CNC derived from Ficus thonningii bark, and silver nanoparticles (AgNps) synthesized through in situ reduction of silver nitrate AgNO3. Energy-dispersive X-ray spectroscopy (EDX) confirmed AgNps incorporation, while scanning electron microscopy (SEM) revealed a highly porous, interconnected structure. The inclusion of CNC and AgNps enhanced PCL's biodegradability, hydrophilicity, and hydroxyapatite nucleation, all crucial for osteoconductivity. The scaffolds demonstrated mechanical properties suitable for bone regeneration, effective antibacterial activity against Escherichia coli, and cytocompatibility with Mesenchymal Stem Cells (MSCs). These findings highlight the potential of PCL/CNCx/AgNps scaffolds as advanced biomaterials for bone tissue engineering, since they offer enhanced resorbability, antibacterial protection, and structural adaptability.

用于骨组织工程的纤维素纳米晶体和纳米银增强的3d打印聚己内酯支架。
纤维素纳米晶体(CNC)由于其生物相容性、可生物降解性、可再生性和强表面反应性,在制药和医疗应用中引起了极大的关注。在这项研究中,我们通过熔融沉积建模(FDM)设计了3d打印的生物活性复合支架,其中包括聚己内酯(PCL),从无花果树皮中提取的CNC,以及通过硝酸银AgNO3原位还原合成的纳米银(AgNps)。能量色散x射线光谱(EDX)证实了AgNps的存在,而扫描电子显微镜(SEM)显示了一个高度多孔、相互连接的结构。CNC和AgNps的加入增强了PCL的生物可降解性、亲水性和羟基磷灰石成核性,这些都对骨导电性至关重要。该支架具有适合骨再生的力学性能,对大肠杆菌具有有效的抗菌活性,并且与间充质干细胞(MSCs)具有细胞相容性。这些发现突出了PCL/CNCx/AgNps支架作为骨组织工程先进生物材料的潜力,因为它们具有增强的可吸收性、抗菌保护和结构适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信