Ultracompact 3D integrated photonic chip for high-fidelity high-dimensional quantum gates

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Kangrui Wang, Dawei Lyu, Chengkun Cai, Tianhao Fu, Jue Wang, Qianke Wang, Jun Liu, Jian Wang
{"title":"Ultracompact 3D integrated photonic chip for high-fidelity high-dimensional quantum gates","authors":"Kangrui Wang,&nbsp;Dawei Lyu,&nbsp;Chengkun Cai,&nbsp;Tianhao Fu,&nbsp;Jue Wang,&nbsp;Qianke Wang,&nbsp;Jun Liu,&nbsp;Jian Wang","doi":"10.1126/sciadv.adv5718","DOIUrl":null,"url":null,"abstract":"<div >Spatial modes of photons offer a rich encoding resource for high-dimensional quantum information processing. Multiplane light conversion (MPLC) enables spatial mode transformation and is applicable in both classical and quantum optics. Here, we demonstrate a polymer-based MPLC device, fabricated via femtosecond laser three-dimensional printing, that realizes high-dimensional quantum logic gates in an ultracompact format. Specifically, we design a three-dimensional Hadamard gate by training a diffractive neural network to generate the required phase distribution. The device is evaluated through quantum process tomography at the single-photon level within spatial modes, achieving a fidelity of 90%. Compared to traditional spatial light modulator–based implementations, our approach integrates spatial mode manipulation into a miniaturized photonic platform. These results highlight the feasibility of polymer-based MPLC for compact quantum logic and open possibilities for scalable, high-dimensional quantum information processing on integrated photonic chips.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 27","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adv5718","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adv5718","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial modes of photons offer a rich encoding resource for high-dimensional quantum information processing. Multiplane light conversion (MPLC) enables spatial mode transformation and is applicable in both classical and quantum optics. Here, we demonstrate a polymer-based MPLC device, fabricated via femtosecond laser three-dimensional printing, that realizes high-dimensional quantum logic gates in an ultracompact format. Specifically, we design a three-dimensional Hadamard gate by training a diffractive neural network to generate the required phase distribution. The device is evaluated through quantum process tomography at the single-photon level within spatial modes, achieving a fidelity of 90%. Compared to traditional spatial light modulator–based implementations, our approach integrates spatial mode manipulation into a miniaturized photonic platform. These results highlight the feasibility of polymer-based MPLC for compact quantum logic and open possibilities for scalable, high-dimensional quantum information processing on integrated photonic chips.

Abstract Image

用于高保真高维量子门的超紧凑3D集成光子芯片
光子的空间模式为高维量子信息处理提供了丰富的编码资源。多平面光转换(MPLC)实现了空间模式转换,适用于经典光学和量子光学。在这里,我们展示了一个基于聚合物的MPLC设备,通过飞秒激光三维打印制造,以超紧凑的格式实现高维量子逻辑门。具体来说,我们通过训练衍射神经网络来生成所需的相位分布,从而设计了一个三维哈达玛门。该装置通过空间模式内单光子水平的量子过程层析成像进行评估,实现了90%的保真度。与传统的基于空间光调制器的实现相比,我们的方法将空间模式操作集成到一个小型化的光子平台中。这些结果强调了基于聚合物的MPLC用于紧凑量子逻辑的可行性,以及在集成光子芯片上进行可扩展、高维量子信息处理的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信