{"title":"Nonreciprocal transport in a room-temperature chiral magnet","authors":"Daisuke Nakamura, Mu-Kun Lee, Kosuke Karube, Masahito Mochizuki, Naoto Nagaosa, Yoshinori Tokura, Yasujiro Taguchi","doi":"10.1126/sciadv.adw8023","DOIUrl":null,"url":null,"abstract":"<div >Chiral magnets under broken time-reversal symmetry can give rise to rectification of moving electrons, called nonreciprocal transport. Several mechanisms, such as the spin fluctuation–induced chiral scattering and asymmetry in the electronic band dispersion with and without the relativistic spin-orbit interaction, have been proposed, but clear identification and theoretical description of these different contributions are desired for full understanding of nonreciprocal transport phenomena. Here, we investigate a chiral magnet Co<sub>8</sub>Zn<sub>9</sub>Mn<sub>3</sub> and find the nonreciprocal transport phenomena consisting of different contributions with distinct field and temperature dependence across the magnetic phase diagram over a wide temperature range including above room temperature. We successfully separate the nonreciprocal resistivity into different components and identify their mechanisms as spin fluctuation–induced chiral scattering and band asymmetry in a single material with the help of theoretical calculations.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 27","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw8023","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw8023","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chiral magnets under broken time-reversal symmetry can give rise to rectification of moving electrons, called nonreciprocal transport. Several mechanisms, such as the spin fluctuation–induced chiral scattering and asymmetry in the electronic band dispersion with and without the relativistic spin-orbit interaction, have been proposed, but clear identification and theoretical description of these different contributions are desired for full understanding of nonreciprocal transport phenomena. Here, we investigate a chiral magnet Co8Zn9Mn3 and find the nonreciprocal transport phenomena consisting of different contributions with distinct field and temperature dependence across the magnetic phase diagram over a wide temperature range including above room temperature. We successfully separate the nonreciprocal resistivity into different components and identify their mechanisms as spin fluctuation–induced chiral scattering and band asymmetry in a single material with the help of theoretical calculations.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.