Macrophage-mimicking nanodiscs for treating systemic infection caused by methicillin-resistant Staphylococcus aureus

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Kailin Feng, Lei Sun, Zhidong Zhou, Jiayuan Alex Zhang, Ronnie H. Fang, Weiwei Gao, Liangfang Zhang
{"title":"Macrophage-mimicking nanodiscs for treating systemic infection caused by methicillin-resistant Staphylococcus aureus","authors":"Kailin Feng,&nbsp;Lei Sun,&nbsp;Zhidong Zhou,&nbsp;Jiayuan Alex Zhang,&nbsp;Ronnie H. Fang,&nbsp;Weiwei Gao,&nbsp;Liangfang Zhang","doi":"10.1126/sciadv.adw7511","DOIUrl":null,"url":null,"abstract":"<div >Antibiotic-resistant bacteria represent a critical public health challenge, underscoring the urgent need for innovative therapeutic strategies. Inspired by the unique properties of cell membrane–derived nanodiscs, particularly their ultrasmall size and intrinsic membrane functions, we develop macrophage membrane–derived nanodiscs (denoted “MФ-NDs”) as a nanomedicine for the treatment of systemic bacterial infections caused by methicillin-resistant <i>Staphylococcus aureus</i> (MRSA). Our findings demonstrate that MФ-NDs interact directly with bacteria, disrupting their membranes, inducing leakage of intracellular contents, and ultimately causing bacterial death. Meanwhile, MФ-NDs reduce intracellular bacterial count. In a mouse model of systemic MRSA infection, treatment with MФ-NDs significantly improves survival rates in both therapeutic and preventative contexts. Moreover, MФ-NDs show a lower propensity to induce bacterial resistance compared to conventional small-molecule antibiotics. No acute toxicity is observed in mice treated with MФ-NDs. Overall, this study underscores the straightforward fabrication and promising potential of MФ-NDs for addressing antibiotic-resistant bacterial infections.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 27","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw7511","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw7511","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Antibiotic-resistant bacteria represent a critical public health challenge, underscoring the urgent need for innovative therapeutic strategies. Inspired by the unique properties of cell membrane–derived nanodiscs, particularly their ultrasmall size and intrinsic membrane functions, we develop macrophage membrane–derived nanodiscs (denoted “MФ-NDs”) as a nanomedicine for the treatment of systemic bacterial infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Our findings demonstrate that MФ-NDs interact directly with bacteria, disrupting their membranes, inducing leakage of intracellular contents, and ultimately causing bacterial death. Meanwhile, MФ-NDs reduce intracellular bacterial count. In a mouse model of systemic MRSA infection, treatment with MФ-NDs significantly improves survival rates in both therapeutic and preventative contexts. Moreover, MФ-NDs show a lower propensity to induce bacterial resistance compared to conventional small-molecule antibiotics. No acute toxicity is observed in mice treated with MФ-NDs. Overall, this study underscores the straightforward fabrication and promising potential of MФ-NDs for addressing antibiotic-resistant bacterial infections.

Abstract Image

巨噬细胞模拟纳米盘治疗耐甲氧西林金黄色葡萄球菌引起的全身感染
耐抗生素细菌是一项重大的公共卫生挑战,强调迫切需要创新的治疗策略。受细胞膜源性纳米片的独特特性,特别是其超小的尺寸和固有的膜功能的启发,我们开发了巨噬细胞膜源性纳米片(表示为“MФ-NDs”)作为纳米药物,用于治疗由耐甲氧西林金黄色葡萄球菌(MRSA)引起的全身细菌感染。我们的研究结果表明MФ-NDs直接与细菌相互作用,破坏其膜,诱导细胞内内容物渗漏,并最终导致细菌死亡。同时,MФ-NDs减少细胞内细菌计数。在全身性MRSA感染的小鼠模型中,MФ-NDs治疗显著提高了治疗和预防情况下的存活率。此外,与传统的小分子抗生素相比,MФ-NDs显示出更低的诱导细菌耐药性的倾向。MФ-NDs对小鼠无急性毒性作用。总的来说,这项研究强调了MФ-NDs在解决抗生素耐药细菌感染方面的直接制造和有希望的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信