Momentum-dependent field-effect transistor

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yuheng Li, Xuanzhang Li, Zhongyuan Zhao, Zhen Mei, Binxuan Zhao, Jiean Shu, Yiqiao Zhou, Liang Liang, Qunqing Li, Shoushan Fan, Xi Chen, Yang Wei
{"title":"Momentum-dependent field-effect transistor","authors":"Yuheng Li,&nbsp;Xuanzhang Li,&nbsp;Zhongyuan Zhao,&nbsp;Zhen Mei,&nbsp;Binxuan Zhao,&nbsp;Jiean Shu,&nbsp;Yiqiao Zhou,&nbsp;Liang Liang,&nbsp;Qunqing Li,&nbsp;Shoushan Fan,&nbsp;Xi Chen,&nbsp;Yang Wei","doi":"10.1126/sciadv.adv4742","DOIUrl":null,"url":null,"abstract":"<div >The silicon-based field-effect transistor (FET) is approaching the physical limits for the prominent short-channel effects and the sequent leakage currents under the conventional paradigm. Here, we propose a momentum-dependent field-effect transistor (MD-FET) to address this issue, in which a monolayer 2D semiconductor is sandwiched by two cross 1D carbon nanotube electrodes. The MD-FET enables a perfect off state, as the elastic tunneling is forbidden by the momentum mismatch between the cross 1D contacts. It can also access a substantial on state, because the momentum mismatch can be compensated by the electron-phonon scattering in a 2D channel. The MD-FET with sub–1-nm channel thus exhibits high on/off ratios of ~10<sup>7</sup>, which breaks through the theoretical limit on the short-channel effect. The MD-FET opens up a previously unknown paradigm to further scale down transistors beyond silicon and inspires a promising solution for the post-Moore era.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 27","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adv4742","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adv4742","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The silicon-based field-effect transistor (FET) is approaching the physical limits for the prominent short-channel effects and the sequent leakage currents under the conventional paradigm. Here, we propose a momentum-dependent field-effect transistor (MD-FET) to address this issue, in which a monolayer 2D semiconductor is sandwiched by two cross 1D carbon nanotube electrodes. The MD-FET enables a perfect off state, as the elastic tunneling is forbidden by the momentum mismatch between the cross 1D contacts. It can also access a substantial on state, because the momentum mismatch can be compensated by the electron-phonon scattering in a 2D channel. The MD-FET with sub–1-nm channel thus exhibits high on/off ratios of ~107, which breaks through the theoretical limit on the short-channel effect. The MD-FET opens up a previously unknown paradigm to further scale down transistors beyond silicon and inspires a promising solution for the post-Moore era.

Abstract Image

动量相关场效应晶体管
硅基场效应晶体管(FET)由于其突出的短沟道效应和随之而来的泄漏电流,在传统模式下已接近物理极限。在这里,我们提出了一种动量依赖场效应晶体管(MD-FET)来解决这个问题,其中单层二维半导体被两个交叉的一维碳纳米管电极夹在中间。由于交叉1D触点之间的动量不匹配禁止了弹性隧穿,MD-FET实现了完美的关断状态。由于动量失配可以通过二维通道中的电子-声子散射来补偿,因此它也可以获得实质性的导通状态。因此,具有亚1nm沟道的MD-FET具有高达107的高通/关比,突破了短沟道效应的理论极限。MD-FET开辟了一个以前未知的范例,进一步缩小了硅以外的晶体管,并为后摩尔时代激发了一个有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信