{"title":"Dehydrocostus Lactone Inhibits Microglia-Mediated Neuroinflammation by Targeting CYP2A6 to Improve Ischemic Brain Injury","authors":"Xin Shu, Xinxin Zou, Jingxuan Zhang, Xu Fang, Xinyu Wang, Hui Wu, Xuan He, Dujuan Sha","doi":"10.1111/cns.70502","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Neuroinflammation is an important factor in ischemic stroke. Dehydrocostus lactone (DHC) plays an anti-inflammatory role in certain diseases. However, the role of DHC in neuroinflammation after ischemic stroke remains unclear.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>DHC was administered to lipopolysaccharide (LPS)-treated BV2 cells and a middle cerebral artery occlusion (MCAO) model to detect the levels of inflammatory factors using quantitative real-time PCR, western blotting, and behavioral tests. Morphological changes in microglia were observed using immunofluorescence. The Swiss Target Prediction database was used to predict the target of DHC. Finally, a specific inhibitor of the target protein was used to investigate its potential synergistic role in neuroinflammation, both with and without being combined with DHC.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The expression of inflammation-related factors both in vivo and in vitro was improved by DHC, and the neurological deficits in mice after MCAO were improved in the DHC administration group. In addition, the Swiss Target Prediction showed that CYP2A6 was a target of DHC. Specifically, the combination of DHC with the CYP2A6 inhibitor showed that DHC exerts anti-inflammatory effects in a CYP2A6-dependent manner.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Mechanistically, DHC inhibited neuroinflammation by binding to the target CYP2A6. Our study suggests that DHC is a promising new strategy for treating ischemic stroke.</p>\n </section>\n </div>","PeriodicalId":154,"journal":{"name":"CNS Neuroscience & Therapeutics","volume":"31 7","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cns.70502","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS Neuroscience & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cns.70502","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Neuroinflammation is an important factor in ischemic stroke. Dehydrocostus lactone (DHC) plays an anti-inflammatory role in certain diseases. However, the role of DHC in neuroinflammation after ischemic stroke remains unclear.
Methods
DHC was administered to lipopolysaccharide (LPS)-treated BV2 cells and a middle cerebral artery occlusion (MCAO) model to detect the levels of inflammatory factors using quantitative real-time PCR, western blotting, and behavioral tests. Morphological changes in microglia were observed using immunofluorescence. The Swiss Target Prediction database was used to predict the target of DHC. Finally, a specific inhibitor of the target protein was used to investigate its potential synergistic role in neuroinflammation, both with and without being combined with DHC.
Results
The expression of inflammation-related factors both in vivo and in vitro was improved by DHC, and the neurological deficits in mice after MCAO were improved in the DHC administration group. In addition, the Swiss Target Prediction showed that CYP2A6 was a target of DHC. Specifically, the combination of DHC with the CYP2A6 inhibitor showed that DHC exerts anti-inflammatory effects in a CYP2A6-dependent manner.
Conclusion
Mechanistically, DHC inhibited neuroinflammation by binding to the target CYP2A6. Our study suggests that DHC is a promising new strategy for treating ischemic stroke.
期刊介绍:
CNS Neuroscience & Therapeutics provides a medium for rapid publication of original clinical, experimental, and translational research papers, timely reviews and reports of novel findings of therapeutic relevance to the central nervous system, as well as papers related to clinical pharmacology, drug development and novel methodologies for drug evaluation. The journal focuses on neurological and psychiatric diseases such as stroke, Parkinson’s disease, Alzheimer’s disease, depression, schizophrenia, epilepsy, and drug abuse.