Bipolar Seesaw of Atmospheric CO2 Between North Pacific and Southern Ocean at Millennial Timescales

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Yi Zhong, Yanguang Liu, Jimin Yu, Chijun Sun, Qin Wen, Sev Kender, Keiji Horikawa, Xu Zhang, Michael E. Weber, Siqi Li, Hu Yang, Stefanie Kaboth-Bahr, André Bahr, Zhaoyang Song, George E. A. Swann, Wei Cao, Sheng Yang, Yuxing Liu, Jingyu Zhang, Hai Li, Wenyue Xia, Qingsong Liu
{"title":"Bipolar Seesaw of Atmospheric CO2 Between North Pacific and Southern Ocean at Millennial Timescales","authors":"Yi Zhong,&nbsp;Yanguang Liu,&nbsp;Jimin Yu,&nbsp;Chijun Sun,&nbsp;Qin Wen,&nbsp;Sev Kender,&nbsp;Keiji Horikawa,&nbsp;Xu Zhang,&nbsp;Michael E. Weber,&nbsp;Siqi Li,&nbsp;Hu Yang,&nbsp;Stefanie Kaboth-Bahr,&nbsp;André Bahr,&nbsp;Zhaoyang Song,&nbsp;George E. A. Swann,&nbsp;Wei Cao,&nbsp;Sheng Yang,&nbsp;Yuxing Liu,&nbsp;Jingyu Zhang,&nbsp;Hai Li,&nbsp;Wenyue Xia,&nbsp;Qingsong Liu","doi":"10.1029/2025GL115758","DOIUrl":null,"url":null,"abstract":"<p>The interhemispheric relation of deep-water ventilation and surface-ocean productivity may have played a prominent role in past atmospheric CO<sub>2</sub> regulation. However, how these processes vary on orbital-millennial timescales remains poorly understood. Here, we present high-resolution proxy data and model simulations on the variability of biological productivity and deep water circulation for the abyssal northwestern Pacific Ocean spanning 20–60 kyr. We found that enhanced surface productivity increased during Heinrich Stadials (HS) and long term, caused by intensified westerly winds and associated dust fertilization, implying CO<sub>2</sub> extraction from the atmosphere and increased nutrient supply to the euphotic zone. A similar increase in productivity for the Southern Ocean during Heinrich events implies enhanced upwelling and exhalation of CO<sub>2</sub> to the atmosphere, indicative for an interhemispheric carbon cycle seesaw on millennial time scales. However, the longer-term global cooling demonstrates that deep ocean carbon storage and degassing was predominantly modulated by the North Pacific Ocean.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 13","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL115758","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GL115758","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The interhemispheric relation of deep-water ventilation and surface-ocean productivity may have played a prominent role in past atmospheric CO2 regulation. However, how these processes vary on orbital-millennial timescales remains poorly understood. Here, we present high-resolution proxy data and model simulations on the variability of biological productivity and deep water circulation for the abyssal northwestern Pacific Ocean spanning 20–60 kyr. We found that enhanced surface productivity increased during Heinrich Stadials (HS) and long term, caused by intensified westerly winds and associated dust fertilization, implying CO2 extraction from the atmosphere and increased nutrient supply to the euphotic zone. A similar increase in productivity for the Southern Ocean during Heinrich events implies enhanced upwelling and exhalation of CO2 to the atmosphere, indicative for an interhemispheric carbon cycle seesaw on millennial time scales. However, the longer-term global cooling demonstrates that deep ocean carbon storage and degassing was predominantly modulated by the North Pacific Ocean.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

千年时间尺度下北太平洋和南大洋间大气CO2的两极跷跷板
深海通风和海洋表层生产力的半球间关系可能在过去的大气CO2调节中发挥了突出作用。然而,这些过程如何在轨道千年的时间尺度上变化仍然知之甚少。本文利用高分辨率代理数据和模型模拟了西北太平洋深海生物生产力和深水环流的变化,跨度为20-60 kyr。研究发现,在海因里希冰期(HS)和长期内,由于西风增强和相关的沙尘施肥,地表生产力增强,这意味着大气中CO2的吸收和对光区的养分供应增加。在海因里希事件期间,南大洋的生产力也有类似的增加,这意味着上升流和二氧化碳向大气的呼出增强,表明在千年的时间尺度上出现了半球间碳循环跷跷板。然而,较长期的全球变冷表明,深海碳储存和脱气主要是由北太平洋调节的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信