Machining swarf formation–inspired fabrication of ferrofluidic helical miniature robots with multimodal locomotion capability

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xinjian Fan, Qinkai Chen, Mingtong Li, Zhengnan Wu, Dingwen Tong, Hui Xie, Zhan Yang, Lining Sun, Metin Sitti
{"title":"Machining swarf formation–inspired fabrication of ferrofluidic helical miniature robots with multimodal locomotion capability","authors":"Xinjian Fan,&nbsp;Qinkai Chen,&nbsp;Mingtong Li,&nbsp;Zhengnan Wu,&nbsp;Dingwen Tong,&nbsp;Hui Xie,&nbsp;Zhan Yang,&nbsp;Lining Sun,&nbsp;Metin Sitti","doi":"10.1126/sciadv.ads4411","DOIUrl":null,"url":null,"abstract":"<div >Magnetic helical robots (MHRs) have shown notable potential for targeted therapy. However, traditional fabrication methods are usually complex and expensive, and the prepared MHR’s locomotion is monotonous with limited capacity. Here, we present a cost-effective, customizable, and scalable fabrication craft of MHR, via using bent needle tips to engrave helical structures onto polymethyl methacrylate substrates and incorporating nanoparticle alignment strategies to create ferrofluidic helical miniature robots (FHMRs) with cross-scale size scopes. We then propose strategic magnetic driving methods that enable FHMRs with five powerful motion modes for negotiating various application scenarios. Experimental results show that FHMRs can move flexibly and effectively simulate thrombus removal within a vascular model by integrating multiple motion modes. Furthermore, modified FHMRs can swiftly deliver drugs to targeted areas, with the capability for phased release on surfaces of wrinkled physiological tissues. These advancements highlight the considerable potential of FHMRs for future applications in the biomedical field.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 27","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ads4411","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads4411","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic helical robots (MHRs) have shown notable potential for targeted therapy. However, traditional fabrication methods are usually complex and expensive, and the prepared MHR’s locomotion is monotonous with limited capacity. Here, we present a cost-effective, customizable, and scalable fabrication craft of MHR, via using bent needle tips to engrave helical structures onto polymethyl methacrylate substrates and incorporating nanoparticle alignment strategies to create ferrofluidic helical miniature robots (FHMRs) with cross-scale size scopes. We then propose strategic magnetic driving methods that enable FHMRs with five powerful motion modes for negotiating various application scenarios. Experimental results show that FHMRs can move flexibly and effectively simulate thrombus removal within a vascular model by integrating multiple motion modes. Furthermore, modified FHMRs can swiftly deliver drugs to targeted areas, with the capability for phased release on surfaces of wrinkled physiological tissues. These advancements highlight the considerable potential of FHMRs for future applications in the biomedical field.

Abstract Image

基于机加工屑形成的具有多模态运动能力的铁磁流体螺旋微型机器人制造
磁性螺旋机器人(mhr)在靶向治疗方面显示出显著的潜力。然而,传统的制造方法通常复杂且昂贵,并且制备的MHR运动单调且容量有限。在这里,我们提出了一种具有成本效益,可定制且可扩展的MHR制造工艺,通过使用弯曲的针尖在聚甲基丙烯酸甲酯基板上雕刻螺旋结构,并结合纳米颗粒对齐策略来创建具有跨尺度尺寸范围的铁磁流体螺旋微型机器人(FHMRs)。然后,我们提出了战略磁驱动方法,使fhmr具有五种强大的运动模式,以适应各种应用场景。实验结果表明,FHMRs通过整合多种运动模式,可以灵活地模拟血管模型内的血栓清除。此外,改性的fhmr可以快速将药物递送到目标区域,并具有在皱褶生理组织表面分阶段释放的能力。这些进展突出了fhmr在未来生物医学领域应用的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信