Badreddine Kanouni, Abdelbaset Laib, Abdelbasset Krama, Salah Necaibia, Josep M. Guerrero
{"title":"Horned Lizard Defense Tactics Optimization Algorithm for Precise Identification of PEMFC Parameters","authors":"Badreddine Kanouni, Abdelbaset Laib, Abdelbasset Krama, Salah Necaibia, Josep M. Guerrero","doi":"10.1002/fuce.70011","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Proton exchange membrane fuel cells (PEMFCs) are emerging as a promising alternative power source, converting hydrogen and oxygen into clean energy. Accurate mathematical modeling of PEMFCs is essential for their simulation, evaluation, optimization, and effective management. This study introduces a newly developed metaheuristic algorithm, the Horned Lizard Defense Tactics Optimization Algorithm (HLDTOA), for parameter identification in PEMFC mathematical models, leveraging semi-empirical equations to enhance precision. The HLDTOA is applied to determine the unknown design parameters of various PEMFCs under diverse operating conditions of pressure and temperature. The HLDTOA achieved a 37.23% improvement in min sum of squared error (SSE) (0.64193093 opposed to 1.0227417), an 18.37% improvement (0.09653342 compared to 0.11827), a 3.32% improvement (1.05636977 compared to 1.0926766), and a 27.32% improvement (1.50432678 opposed to 2.07) for H-12, 250 W PEMFC SR-12, for Nedstack, respectively. Statistical analyses further demonstrate the robustness and superiority of HLDTOA. The high correlation between derived and experimentally measured <i>I</i>–<i>V</i> polarization curves underscores its precision and reliability. Additionally, the dynamic characteristics of PEMFCs are evaluated to test the optimized parameters under varying reactant pressures and cell temperatures. The HLDTOA offers exceptional accuracy and reliability in identifying unknown PEMFC parameters, marking a significant advancement in fuel cell modeling and optimization.</p>\n </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.70011","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Proton exchange membrane fuel cells (PEMFCs) are emerging as a promising alternative power source, converting hydrogen and oxygen into clean energy. Accurate mathematical modeling of PEMFCs is essential for their simulation, evaluation, optimization, and effective management. This study introduces a newly developed metaheuristic algorithm, the Horned Lizard Defense Tactics Optimization Algorithm (HLDTOA), for parameter identification in PEMFC mathematical models, leveraging semi-empirical equations to enhance precision. The HLDTOA is applied to determine the unknown design parameters of various PEMFCs under diverse operating conditions of pressure and temperature. The HLDTOA achieved a 37.23% improvement in min sum of squared error (SSE) (0.64193093 opposed to 1.0227417), an 18.37% improvement (0.09653342 compared to 0.11827), a 3.32% improvement (1.05636977 compared to 1.0926766), and a 27.32% improvement (1.50432678 opposed to 2.07) for H-12, 250 W PEMFC SR-12, for Nedstack, respectively. Statistical analyses further demonstrate the robustness and superiority of HLDTOA. The high correlation between derived and experimentally measured I–V polarization curves underscores its precision and reliability. Additionally, the dynamic characteristics of PEMFCs are evaluated to test the optimized parameters under varying reactant pressures and cell temperatures. The HLDTOA offers exceptional accuracy and reliability in identifying unknown PEMFC parameters, marking a significant advancement in fuel cell modeling and optimization.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.