{"title":"A Novel Jamming Method Based on Micro-Doppler Modulation and Electromagnetic Meta-Materials","authors":"Guikun Liu, Honglin Li, Feng Ming, Liang Li, Jingwen Mou, Chen Song, Zhengshuai Li, Peng Wang","doi":"10.1049/rsn2.70052","DOIUrl":null,"url":null,"abstract":"<p>The rotating corner reflector is widely used in passive jamming methods because of its micro-Doppler modulation effect on the echo signal of synthetic aperture radar. Nevertheless, the traditional methods based on this have problems of single jamming effect and limited jamming range, which are gradually unable to adapt to the increasingly complex electromagnetic countermeasure environment. Therefore, it is of great significance to optimise and improve this to achieve more abundant jamming effects. With the development of material technology, the electromagnetic meta-materials can realise the intra-pulse modulation of radar signals. Thus, a novel jamming method based on the uniform acceleration or deceleration rotating corner reflector and the periodic pulse modulation electromagnetic meta-material is proposed in this paper. Through changing the modulation parameters of proposed jamming model, four different types of jamming effects can be achieved and regulated flexibly. The imaging characteristics of proposed jamming model and the regulation effects of jamming parameters are analysed, respectively. Then, the simulation experiments are performed using the original echo data of airborne SAR system and the simulation results verify the correctness of theoretical analysis. Finally, the prototype design of proposed jamming model and the practical feasibility analysis are given, respectively, which can provide support for the subsequent engineering implementation.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70052","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70052","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The rotating corner reflector is widely used in passive jamming methods because of its micro-Doppler modulation effect on the echo signal of synthetic aperture radar. Nevertheless, the traditional methods based on this have problems of single jamming effect and limited jamming range, which are gradually unable to adapt to the increasingly complex electromagnetic countermeasure environment. Therefore, it is of great significance to optimise and improve this to achieve more abundant jamming effects. With the development of material technology, the electromagnetic meta-materials can realise the intra-pulse modulation of radar signals. Thus, a novel jamming method based on the uniform acceleration or deceleration rotating corner reflector and the periodic pulse modulation electromagnetic meta-material is proposed in this paper. Through changing the modulation parameters of proposed jamming model, four different types of jamming effects can be achieved and regulated flexibly. The imaging characteristics of proposed jamming model and the regulation effects of jamming parameters are analysed, respectively. Then, the simulation experiments are performed using the original echo data of airborne SAR system and the simulation results verify the correctness of theoretical analysis. Finally, the prototype design of proposed jamming model and the practical feasibility analysis are given, respectively, which can provide support for the subsequent engineering implementation.
期刊介绍:
IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications.
Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.