Generalizing and Classifying From Few Samples: A Comprehension of Approaches to Few-Shot Visual Learning

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Nadeem Yousuf Khanday, Shabir Ahmad Sofi
{"title":"Generalizing and Classifying From Few Samples: A Comprehension of Approaches to Few-Shot Visual Learning","authors":"Nadeem Yousuf Khanday,&nbsp;Shabir Ahmad Sofi","doi":"10.1111/coin.70098","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Unlike traditional machine learning techniques, few-shot learning (FSL) represents a paradigm aimed at acquiring new tasks from just a handful of labeled examples. The challenge in FSL lies in its requirement for models to generalize effectively from a small dataset to previously unseen examples. Various approaches have been developed for FSL, encompassing techniques such as metric learning, meta-learning, and hybrid methods, among others. These approaches have found success in numerous computer vision tasks, including image and video classification, object detection, object segmentation, robotics, natural language processing, and various real-world applications such as medical diagnosis and self-driving cars. This comprehensive survey offers an in-depth exploration of recent advancements and the current state-of-the-art in FSL. The study presents a thorough examination of different FSL approaches, categorizing them primarily into meta-learning and non-meta-learning methods. It also delves into benchmark datasets for FSL, highlights existing research challenges, and explores the diverse applications of FSL. Furthermore, the survey identifies and discusses open research challenges within the field of FSL.</p>\n </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.70098","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Unlike traditional machine learning techniques, few-shot learning (FSL) represents a paradigm aimed at acquiring new tasks from just a handful of labeled examples. The challenge in FSL lies in its requirement for models to generalize effectively from a small dataset to previously unseen examples. Various approaches have been developed for FSL, encompassing techniques such as metric learning, meta-learning, and hybrid methods, among others. These approaches have found success in numerous computer vision tasks, including image and video classification, object detection, object segmentation, robotics, natural language processing, and various real-world applications such as medical diagnosis and self-driving cars. This comprehensive survey offers an in-depth exploration of recent advancements and the current state-of-the-art in FSL. The study presents a thorough examination of different FSL approaches, categorizing them primarily into meta-learning and non-meta-learning methods. It also delves into benchmark datasets for FSL, highlights existing research challenges, and explores the diverse applications of FSL. Furthermore, the survey identifies and discusses open research challenges within the field of FSL.

少数样本泛化与分类:对少数镜头视觉学习方法的理解
与传统的机器学习技术不同,少量学习(FSL)代表了一种旨在从少数标记示例中获取新任务的范式。FSL的挑战在于它要求模型从小数据集有效地推广到以前未见过的示例。为FSL开发了各种方法,包括度量学习、元学习和混合方法等技术。这些方法已经在许多计算机视觉任务中取得了成功,包括图像和视频分类、对象检测、对象分割、机器人、自然语言处理以及各种现实世界的应用,如医疗诊断和自动驾驶汽车。这项全面的调查提供了对FSL最新进展和当前最先进技术的深入探索。该研究对不同的FSL方法进行了全面的研究,并将它们主要分为元学习和非元学习方法。它还深入研究了FSL的基准数据集,突出了现有的研究挑战,并探索了FSL的各种应用。此外,该调查还确定并讨论了FSL领域的开放式研究挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信