Shuangrong You, Hongye Zhang, Adil Shah, Zhenkai Cai, Qian Dong, Markus Mueller
{"title":"Numerical Study of Multi-Pole Generator With HTS Windings for Direct Drive Wind Turbines","authors":"Shuangrong You, Hongye Zhang, Adil Shah, Zhenkai Cai, Qian Dong, Markus Mueller","doi":"10.1049/elp2.70060","DOIUrl":null,"url":null,"abstract":"<p>High-temperature superconducting (HTS) materials show potential advantages for direct drive wind turbine generators by enabling higher power density and lower volume. However, incorporating HTS windings necessitates a cryogenic system, which can increase costs, add weight and reduce overall generator efficiency. Consequently, investigating AC losses in HTS windings is crucial given the losses largely influence the cryogenic requirements. C-GEN is a permanent magnet synchronous generator conceived by the University of Edinburgh, which is characterised by modular structures for easy installation and maintenance. In this work, we have numerically investigated the AC losses in a MW-class direct drive air-cored HTS wind turbine generator, which has evolved from the C-GEN topology. Finite-element method (FEM) modelling was applied using COMSOL Multiphysics to build generator models equipped with HTS windings. Four designs were analysed in this study. Design-1 follows a conventional C-GEN structure and serves as a reference, utilising permanent magnets (PMs) for the rotor and air-cored copper windings for the stator. Designs-2 and 3 incorporate partial HTS structures. Design-2 replaces the stator copper coils with HTS windings, whereas Design-3 substitutes the rotor permanent magnets with closed magnetic loop (CML) HTS coil arrays. Design-4 features a fully HTS design, with both HTS rotor and stator windings. Dynamic analysis of the AC losses in HTS windings was conducted. The simulation results show that both partially and fully HTS designs provide higher power density compared with conventional design.</p>","PeriodicalId":13352,"journal":{"name":"Iet Electric Power Applications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70060","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Electric Power Applications","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.70060","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
High-temperature superconducting (HTS) materials show potential advantages for direct drive wind turbine generators by enabling higher power density and lower volume. However, incorporating HTS windings necessitates a cryogenic system, which can increase costs, add weight and reduce overall generator efficiency. Consequently, investigating AC losses in HTS windings is crucial given the losses largely influence the cryogenic requirements. C-GEN is a permanent magnet synchronous generator conceived by the University of Edinburgh, which is characterised by modular structures for easy installation and maintenance. In this work, we have numerically investigated the AC losses in a MW-class direct drive air-cored HTS wind turbine generator, which has evolved from the C-GEN topology. Finite-element method (FEM) modelling was applied using COMSOL Multiphysics to build generator models equipped with HTS windings. Four designs were analysed in this study. Design-1 follows a conventional C-GEN structure and serves as a reference, utilising permanent magnets (PMs) for the rotor and air-cored copper windings for the stator. Designs-2 and 3 incorporate partial HTS structures. Design-2 replaces the stator copper coils with HTS windings, whereas Design-3 substitutes the rotor permanent magnets with closed magnetic loop (CML) HTS coil arrays. Design-4 features a fully HTS design, with both HTS rotor and stator windings. Dynamic analysis of the AC losses in HTS windings was conducted. The simulation results show that both partially and fully HTS designs provide higher power density compared with conventional design.
期刊介绍:
IET Electric Power Applications publishes papers of a high technical standard with a suitable balance of practice and theory. The scope covers a wide range of applications and apparatus in the power field. In addition to papers focussing on the design and development of electrical equipment, papers relying on analysis are also sought, provided that the arguments are conveyed succinctly and the conclusions are clear.
The scope of the journal includes the following:
The design and analysis of motors and generators of all sizes
Rotating electrical machines
Linear machines
Actuators
Power transformers
Railway traction machines and drives
Variable speed drives
Machines and drives for electrically powered vehicles
Industrial and non-industrial applications and processes
Current Special Issue. Call for papers:
Progress in Electric Machines, Power Converters and their Control for Wave Energy Generation - https://digital-library.theiet.org/files/IET_EPA_CFP_PEMPCCWEG.pdf