A Design of Experiment to Evaluate the Printability for Bioprinting by Using Deep Learning Image Similarity

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Leon Balters, Stephan Reichl
{"title":"A Design of Experiment to Evaluate the Printability for Bioprinting by Using Deep Learning Image Similarity","authors":"Leon Balters,&nbsp;Stephan Reichl","doi":"10.1002/jbm.a.37961","DOIUrl":null,"url":null,"abstract":"<p>Bioprinting is a growing area in the field of tissue engineering that offers a potential solution to the global shortage of organ transplants. Ensuring high printability is crucial for bioprinting. To better understand printability, a design of experiment model that examines printing speed and pressure in extrusion-based printing was developed. Two biomaterials, hyaluronic acid and sodium alginate, were selected as surrogate biomaterials to understand how rheological properties play a role in printability. Various rheological aspects such as shear-thinning behavior, viscosity, and recovery were investigated. To further evaluate printability, a new method was used that includes deep learning image similarity. The information obtained with the surrogate bioinks was then applied to another biomaterial, methacrylated hyaluronic acid, in combination with corneal keratocytes to demonstrate the successful implementation of the outcome of this design of experiment. As a result of this study, a better understanding of the rheological properties for bioprinting was achieved, leading to a next step towards improving extrusion-based bioprinting, which can be used for a wide range of applications.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 7","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37961","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37961","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bioprinting is a growing area in the field of tissue engineering that offers a potential solution to the global shortage of organ transplants. Ensuring high printability is crucial for bioprinting. To better understand printability, a design of experiment model that examines printing speed and pressure in extrusion-based printing was developed. Two biomaterials, hyaluronic acid and sodium alginate, were selected as surrogate biomaterials to understand how rheological properties play a role in printability. Various rheological aspects such as shear-thinning behavior, viscosity, and recovery were investigated. To further evaluate printability, a new method was used that includes deep learning image similarity. The information obtained with the surrogate bioinks was then applied to another biomaterial, methacrylated hyaluronic acid, in combination with corneal keratocytes to demonstrate the successful implementation of the outcome of this design of experiment. As a result of this study, a better understanding of the rheological properties for bioprinting was achieved, leading to a next step towards improving extrusion-based bioprinting, which can be used for a wide range of applications.

Abstract Image

基于深度学习图像相似度评价生物打印可打印性的实验设计
生物打印是组织工程领域的一个新兴领域,它为全球器官移植短缺提供了一个潜在的解决方案。确保高印刷性对生物打印至关重要。为了更好地了解印刷性能,设计了一种实验模型,用于检测挤出印刷的印刷速度和压力。选择两种生物材料,透明质酸和海藻酸钠作为替代生物材料,以了解流变特性如何在可打印性中发挥作用。各种流变学方面,如剪切减薄行为,粘度和恢复进行了研究。为了进一步评估可打印性,使用了一种包括深度学习图像相似度的新方法。然后将从替代生物链接中获得的信息应用于另一种生物材料甲基丙烯酸透明质酸与角膜角质细胞的结合,以证明该实验设计结果的成功实施。这项研究的结果是,对生物打印的流变特性有了更好的了解,从而朝着改进基于挤出的生物打印迈出了下一步,这可以用于广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biomedical materials research. Part A
Journal of biomedical materials research. Part A 工程技术-材料科学:生物材料
CiteScore
10.40
自引率
2.00%
发文量
135
审稿时长
3.6 months
期刊介绍: The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device. The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信