Beamforming Optimization for RIS-Assisted RF Sensing in Multipath NLOS Environments

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Cengcang Zeng;Hongbin Li
{"title":"Beamforming Optimization for RIS-Assisted RF Sensing in Multipath NLOS Environments","authors":"Cengcang Zeng;Hongbin Li","doi":"10.1109/LSENS.2025.3581098","DOIUrl":null,"url":null,"abstract":"Reconfigurable intelligent surfaces (RIS) have emerged as a key technology for enhancing radar performance, particularly in nonline-of-sight RF sensing. This letter investigates joint transmit and RIS beamforming for RIS-assisted radar in multipath environments, considering both amplitude-phase RIS (AP-RIS) and phase-only RIS (P-RIS). To efficiently optimize RIS configurations, we develop a projection gradient method for AP-RIS and a manifold gradient descent approach for P-RIS, both significantly reducing computational complexity. We also analyze detection performance metrics, including false alarm and detection probabilities, providing a theoretical foundation for system evaluation. Simulation results demonstrate that AP-RIS improves detection performance by leveraging amplitude-phase control to optimize indirect paths, while P-RIS achieves performance gains through optimized phase shifts, despite its unit-modulus constraint. Both schemes significantly outperform the conventional method that neglects indirect paths in strong multipath environments.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 7","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11045097/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Reconfigurable intelligent surfaces (RIS) have emerged as a key technology for enhancing radar performance, particularly in nonline-of-sight RF sensing. This letter investigates joint transmit and RIS beamforming for RIS-assisted radar in multipath environments, considering both amplitude-phase RIS (AP-RIS) and phase-only RIS (P-RIS). To efficiently optimize RIS configurations, we develop a projection gradient method for AP-RIS and a manifold gradient descent approach for P-RIS, both significantly reducing computational complexity. We also analyze detection performance metrics, including false alarm and detection probabilities, providing a theoretical foundation for system evaluation. Simulation results demonstrate that AP-RIS improves detection performance by leveraging amplitude-phase control to optimize indirect paths, while P-RIS achieves performance gains through optimized phase shifts, despite its unit-modulus constraint. Both schemes significantly outperform the conventional method that neglects indirect paths in strong multipath environments.
多径NLOS环境下ris辅助射频传感的波束形成优化
可重构智能表面(RIS)已成为提高雷达性能的关键技术,特别是在非视距射频传感领域。本文研究了多径环境下RIS辅助雷达的联合发射和RIS波束形成,同时考虑了幅相RIS (AP-RIS)和纯相位RIS (P-RIS)。为了有效地优化RIS配置,我们开发了AP-RIS的投影梯度法和P-RIS的流形梯度下降法,两者都显著降低了计算复杂度。我们还分析了检测性能指标,包括虚警和检测概率,为系统评估提供了理论基础。仿真结果表明,AP-RIS通过利用幅相控制来优化间接路径来提高检测性能,而P-RIS通过优化相移来实现性能提升,尽管存在单位模量约束。在强多径环境下,两种方案都明显优于忽略间接路径的传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信