Efficient Critical Data Generation Framework for Vision Sensors of Autonomous Vehicle Perception System

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Cheng Peng;Yichun Su;Zhen Wang;Jianquan Chen;Jiaping Wang;Xiangmo Zhao;Xiaopeng Li
{"title":"Efficient Critical Data Generation Framework for Vision Sensors of Autonomous Vehicle Perception System","authors":"Cheng Peng;Yichun Su;Zhen Wang;Jianquan Chen;Jiaping Wang;Xiangmo Zhao;Xiaopeng Li","doi":"10.1109/LSENS.2025.3580749","DOIUrl":null,"url":null,"abstract":"Visual sensors are essential for the perception systems of autonomous vehicles (AVs) and for ensuring driving safety. While data-driven perception methods perform well in common scenes, they often struggle with critical situations, leading to potential system failures and accidents. To overcome these, we propose a novel approach that fine-tunes large language models integrating a heuristic scene interpreter and employs inspired visual data generation techniques to produce data that closely mimics real-world conditions. This method is implemented on the device designed to inject the generated visual data directly into real sensors, enabling accurate performance assessments of AV perception systems. Authenticity, rationality, and quality of the generated scenes are evaluated through extensive experiments. Experimental results demonstrate that our method significantly enhances the generation of critical data and underscores the substantial value of our approach to improving the safety and reliability of AVs.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 7","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11039159/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Visual sensors are essential for the perception systems of autonomous vehicles (AVs) and for ensuring driving safety. While data-driven perception methods perform well in common scenes, they often struggle with critical situations, leading to potential system failures and accidents. To overcome these, we propose a novel approach that fine-tunes large language models integrating a heuristic scene interpreter and employs inspired visual data generation techniques to produce data that closely mimics real-world conditions. This method is implemented on the device designed to inject the generated visual data directly into real sensors, enabling accurate performance assessments of AV perception systems. Authenticity, rationality, and quality of the generated scenes are evaluated through extensive experiments. Experimental results demonstrate that our method significantly enhances the generation of critical data and underscores the substantial value of our approach to improving the safety and reliability of AVs.
自动驾驶汽车感知系统视觉传感器关键数据高效生成框架
视觉传感器对于自动驾驶汽车的感知系统和确保驾驶安全至关重要。虽然数据驱动的感知方法在常见场景中表现良好,但它们经常在关键情况下挣扎,导致潜在的系统故障和事故。为了克服这些问题,我们提出了一种新颖的方法,该方法对集成启发式场景解释器的大型语言模型进行微调,并采用启发式视觉数据生成技术来生成密切模仿现实世界条件的数据。该方法在设备上实现,旨在将生成的视觉数据直接注入真实传感器,从而实现对自动驾驶感知系统的准确性能评估。通过大量的实验来评估生成场景的真实性、合理性和质量。实验结果表明,我们的方法显著增强了关键数据的生成,并强调了我们的方法在提高自动驾驶汽车的安全性和可靠性方面的巨大价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信