Oriented Ramsey numbers of some sparse graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Junying Lu , Yaojun Chen
{"title":"Oriented Ramsey numbers of some sparse graphs","authors":"Junying Lu ,&nbsp;Yaojun Chen","doi":"10.1016/j.dam.2025.06.051","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>H</mi></math></span> be an oriented graph without directed cycle. The oriented Ramsey number of <span><math><mi>H</mi></math></span>, denoted by <span><math><mrow><mover><mrow><mi>r</mi></mrow><mrow><mo>⇀</mo></mrow></mover><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>, is the smallest integer <span><math><mi>N</mi></math></span> such that every tournament on <span><math><mi>N</mi></math></span> vertices contains a copy of <span><math><mi>H</mi></math></span>. Rosenfeld (JCT-B, 1974) conjectured that <span><math><mrow><mover><mrow><mi>r</mi></mrow><mrow><mo>⇀</mo></mrow></mover><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>H</mi><mo>|</mo></mrow></mrow></math></span> if <span><math><mi>H</mi></math></span> is a cycle of sufficiently large order, which was confirmed for <span><math><mrow><mrow><mo>|</mo><mi>H</mi><mo>|</mo></mrow><mo>≥</mo><mn>9</mn></mrow></math></span> by Zein recently, and so does if <span><math><mi>H</mi></math></span> is a path. Note that <span><math><mrow><mover><mrow><mi>r</mi></mrow><mrow><mo>⇀</mo></mrow></mover><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>H</mi><mo>|</mo></mrow></mrow></math></span> implies any tournament contains <span><math><mi>H</mi></math></span> as a spanning subdigraph, it is interesting to ask when <span><math><mrow><mover><mrow><mi>r</mi></mrow><mrow><mo>⇀</mo></mrow></mover><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>H</mi><mo>|</mo></mrow></mrow></math></span> for <span><math><mi>H</mi></math></span> being a sparse oriented graph. Sós (1986) conjectured this is true if <span><math><mi>H</mi></math></span> is a directed path plus an additional edge containing the origin of the path as one end, which was confirmed by Petrović (JGT, 1988). In this paper, we show that <span><math><mrow><mover><mrow><mi>r</mi></mrow><mrow><mo>⇀</mo></mrow></mover><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>H</mi><mo>|</mo></mrow></mrow></math></span> for <span><math><mi>H</mi></math></span> being an oriented graph obtained by identifying a vertex of an antidirected cycle with one end of a directed path. Some other oriented Ramsey numbers for oriented graphs with one cycle are also discussed.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 95-101"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2500366X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let H be an oriented graph without directed cycle. The oriented Ramsey number of H, denoted by r(H), is the smallest integer N such that every tournament on N vertices contains a copy of H. Rosenfeld (JCT-B, 1974) conjectured that r(H)=|H| if H is a cycle of sufficiently large order, which was confirmed for |H|9 by Zein recently, and so does if H is a path. Note that r(H)=|H| implies any tournament contains H as a spanning subdigraph, it is interesting to ask when r(H)=|H| for H being a sparse oriented graph. Sós (1986) conjectured this is true if H is a directed path plus an additional edge containing the origin of the path as one end, which was confirmed by Petrović (JGT, 1988). In this paper, we show that r(H)=|H| for H being an oriented graph obtained by identifying a vertex of an antidirected cycle with one end of a directed path. Some other oriented Ramsey numbers for oriented graphs with one cycle are also discussed.
一些稀疏图的面向Ramsey数
设H是一个没有有向环的有向图。H的有向Ramsey数,用r³(H)表示,是最小的整数N,使得N个顶点上的每个比赛场都包含H的一个副本。Rosenfeld (jjt - b, 1974)推测,如果H是一个足够大阶的循环,r³(H)=|H|,最近由Zein证实了这一点,当|H|≥9时,H是一条路径也是如此。注意r (H)=|H|意味着任何比赛都包含H作为生成子图,当r (H)=|H|时H是一个稀疏定向图,这很有趣。Sós(1986)推测,如果H是一条有向路径,加上一条包含路径原点作为终点的附加边,这是正确的,petrovic (JGT, 1988)证实了这一点。本文证明了当H是一个有向图时,通过识别有向路径一端为反有向环的一个顶点而得到的有向图,r∑(H)=|H|。讨论了单环有向图的其他一些有向Ramsey数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信