First-principles study of tunable GaTe/GaAs heterostructure: A promising material for high-performance photodetectors

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Yayou Wang , Xin Guo , Youchun Ma , Yongqiang Ma , Jie Wang , Xinhao Xu , Yurou Li , Dongyu Yang , Yongpeng Zhao , Pengfei Shao
{"title":"First-principles study of tunable GaTe/GaAs heterostructure: A promising material for high-performance photodetectors","authors":"Yayou Wang ,&nbsp;Xin Guo ,&nbsp;Youchun Ma ,&nbsp;Yongqiang Ma ,&nbsp;Jie Wang ,&nbsp;Xinhao Xu ,&nbsp;Yurou Li ,&nbsp;Dongyu Yang ,&nbsp;Yongpeng Zhao ,&nbsp;Pengfei Shao","doi":"10.1016/j.physb.2025.417561","DOIUrl":null,"url":null,"abstract":"<div><div>A GaTe/GaAs van der Waals heterojunction (vdWH) was constructed via first-principles calculations, with systematic investigation of its structural, transport, and optoelectronic properties. Geometric structure calculations revealed that the GaTe/GaAs heterostructure is a typical type-II vdWH, which could effectively suppress the recombination of electron-hole pairs. The heterostructure's stability was comprehensively verified through binding energy calculations, phonon spectra, and ab initio molecular dynamics (AIMD) simulations, demonstrating favorable energetic, mechanical, and thermodynamic stability. Furthermore, Heyd-Scuseria-Ernzerhof (HSE06) functional calculations demonstrated an indirect bandgap of 0.87 eV for the GaTe/GaAs vdWH. And the vdWH exhibits exceptional anisotropic transport properties and tunable optoelectronic characteristics. Most notably, it demonstrated dramatically enhanced carrier mobilities compared to monolayer constituents: electron mobility reaches 7632.48 cm<sup>2</sup>V<sup>−1</sup>s<sup>−1</sup>(<em>x</em>-axis) and 80,995.84 cm<sup>2</sup>V<sup>−1</sup>s<sup>−1</sup> (<em>y</em>-axis), while hole mobility peaks at 35,673.88 cm<sup>2</sup>V<sup>−1</sup>s<sup>−1</sup> (<em>x</em>-axis) and 122,337.20 cm<sup>2</sup>V<sup>−1</sup>s<sup>−1</sup> (<em>y</em>-axis), confirming strong directional transport advantages. Critically, the electronic structure showed high tunability by the external electric field and the strain engineering. These tailored electronic properties enable superior near-infrared (NIR) light absorption exceeding individual monolayers. Combined with its outstanding electrical characteristics and carrier mobility, the GaTe/GaAs vdWH emerges as a highly promising candidate for advanced NIR optoelectronic devices.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"715 ","pages":"Article 417561"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625006787","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

A GaTe/GaAs van der Waals heterojunction (vdWH) was constructed via first-principles calculations, with systematic investigation of its structural, transport, and optoelectronic properties. Geometric structure calculations revealed that the GaTe/GaAs heterostructure is a typical type-II vdWH, which could effectively suppress the recombination of electron-hole pairs. The heterostructure's stability was comprehensively verified through binding energy calculations, phonon spectra, and ab initio molecular dynamics (AIMD) simulations, demonstrating favorable energetic, mechanical, and thermodynamic stability. Furthermore, Heyd-Scuseria-Ernzerhof (HSE06) functional calculations demonstrated an indirect bandgap of 0.87 eV for the GaTe/GaAs vdWH. And the vdWH exhibits exceptional anisotropic transport properties and tunable optoelectronic characteristics. Most notably, it demonstrated dramatically enhanced carrier mobilities compared to monolayer constituents: electron mobility reaches 7632.48 cm2V−1s−1(x-axis) and 80,995.84 cm2V−1s−1 (y-axis), while hole mobility peaks at 35,673.88 cm2V−1s−1 (x-axis) and 122,337.20 cm2V−1s−1 (y-axis), confirming strong directional transport advantages. Critically, the electronic structure showed high tunability by the external electric field and the strain engineering. These tailored electronic properties enable superior near-infrared (NIR) light absorption exceeding individual monolayers. Combined with its outstanding electrical characteristics and carrier mobility, the GaTe/GaAs vdWH emerges as a highly promising candidate for advanced NIR optoelectronic devices.
可调谐GaTe/GaAs异质结构的第一性原理研究:一种有前途的高性能光电探测器材料
通过第一性原理计算构建了一个GaTe/GaAs范德华异质结(vdWH),并对其结构、输运和光电子性质进行了系统的研究。几何结构计算表明GaTe/GaAs异质结构是典型的ii型vdWH,可以有效抑制电子-空穴对的复合。通过结合能计算、声子谱和从头算分子动力学(AIMD)模拟全面验证了异质结构的稳定性,显示出良好的能量、力学和热力学稳定性。此外,Heyd-Scuseria-Ernzerhof (HSE06)泛函计算表明GaTe/GaAs vdWH的间接带隙为0.87 eV。vdWH具有优异的各向异性输运特性和可调谐的光电特性。最值得注意的是,与单层材料相比,它的载流子迁移率显著提高:电子迁移率达到7632.48 cm2V−1s−1(x轴)和80995.84 cm2V−1s−1(y轴),空穴迁移率达到35,673.88 cm2V−1s−1(x轴)和122,337.20 cm2V−1s−1(y轴),证实了强大的定向传输优势。重要的是,电子结构在外加电场和应变工程的作用下表现出很高的可调性。这些定制的电子特性使其具有优于单个单层的近红外(NIR)光吸收能力。结合其出色的电气特性和载流子迁移率,GaTe/GaAs vdWH成为先进近红外光电器件的极有前途的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信