Prediction of low-modulus Ti-based refractory high-entropy alloys for orthopedic implants using machine learning and DFT calculations

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Ishfaq Ahmed , Qu Nan , Waqas Akhtar , Shanza Mubashir , Danni Yang , Liu Yong , Zhu Jingchuan
{"title":"Prediction of low-modulus Ti-based refractory high-entropy alloys for orthopedic implants using machine learning and DFT calculations","authors":"Ishfaq Ahmed ,&nbsp;Qu Nan ,&nbsp;Waqas Akhtar ,&nbsp;Shanza Mubashir ,&nbsp;Danni Yang ,&nbsp;Liu Yong ,&nbsp;Zhu Jingchuan","doi":"10.1016/j.physb.2025.417560","DOIUrl":null,"url":null,"abstract":"<div><div>Designing metallic biomaterials with elastic properties comparable to human bone is a key challenge in orthopedic implant development. This study presents an integrated machine learning (ML) and density functional theory (DFT) framework to accelerate the discovery of biocompatible refractory high-entropy alloys (RHEAs). A dataset comprising eight key descriptors was used to train six ML models, with CatBoost achieving the highest accuracy (R<sup>2</sup> = 0.99 training, 0.97 testing; RMSE = 0.1 GPa). SHAP analysis identified atomic radius, electronegativity, and valence electron concentration as dominant factors influencing elasticity. The framework was applied to TiZrNbX (X = Ta, Hf, V, Mo, W, Re, Cr) alloys. ML-predicted young's moduli (74.5–172.4 GPa) closely matched DFT results (57.8–156.1 GPa). TiZrNbHf, with its low modulus and favorable ductility, emerged as a promising implant candidate. This work demonstrates the effectiveness of ML-DFT integration for rapid, interpretable, and targeted design of next-generation orthopedic materials.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"715 ","pages":"Article 417560"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625006775","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Designing metallic biomaterials with elastic properties comparable to human bone is a key challenge in orthopedic implant development. This study presents an integrated machine learning (ML) and density functional theory (DFT) framework to accelerate the discovery of biocompatible refractory high-entropy alloys (RHEAs). A dataset comprising eight key descriptors was used to train six ML models, with CatBoost achieving the highest accuracy (R2 = 0.99 training, 0.97 testing; RMSE = 0.1 GPa). SHAP analysis identified atomic radius, electronegativity, and valence electron concentration as dominant factors influencing elasticity. The framework was applied to TiZrNbX (X = Ta, Hf, V, Mo, W, Re, Cr) alloys. ML-predicted young's moduli (74.5–172.4 GPa) closely matched DFT results (57.8–156.1 GPa). TiZrNbHf, with its low modulus and favorable ductility, emerged as a promising implant candidate. This work demonstrates the effectiveness of ML-DFT integration for rapid, interpretable, and targeted design of next-generation orthopedic materials.
利用机器学习和DFT计算预测骨科植入物用低模量ti基难熔高熵合金
设计具有与人类骨骼相当的弹性性能的金属生物材料是骨科植入物发展的关键挑战。本研究提出了一个集成的机器学习(ML)和密度泛函理论(DFT)框架,以加速生物相容性难熔高熵合金(RHEAs)的发现。使用包含8个关键描述符的数据集来训练6个ML模型,CatBoost达到了最高的准确率(训练R2 = 0.99,测试R2 = 0.97;RMSE = 0.1 GPa)。SHAP分析发现原子半径、电负性和价电子浓度是影响弹性的主要因素。该框架应用于TiZrNbX (X = Ta, Hf, V, Mo, W, Re, Cr)合金。ml预测的young’s模量(74.5 ~ 172.4 GPa)与DFT结果(57.8 ~ 156.1 GPa)非常吻合。TiZrNbHf具有低模量和良好的延展性,是一种很有前途的植入物候选材料。这项工作证明了ML-DFT集成对于快速、可解释和有针对性地设计下一代骨科材料的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信