Low-temperature sinterable silver paste for die-attachment of wide band gap power electronics

IF 4.3 Q2 CHEMISTRY, PHYSICAL
Yun Ah Kim , Zhiyan Li , GiPyo Kim , Min-Su Kim , Min Ju Yu , Hyun Kook Kim , Dong Hwan Park , Byungkwon Lim
{"title":"Low-temperature sinterable silver paste for die-attachment of wide band gap power electronics","authors":"Yun Ah Kim ,&nbsp;Zhiyan Li ,&nbsp;GiPyo Kim ,&nbsp;Min-Su Kim ,&nbsp;Min Ju Yu ,&nbsp;Hyun Kook Kim ,&nbsp;Dong Hwan Park ,&nbsp;Byungkwon Lim","doi":"10.1016/j.chphi.2025.100908","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, we introduce a simple fabrication method of the Ag paste for low-temperature sintering for die-attachment of WBG power electronics. Silver nanoparticles (Ag NPs) were chosen for the die-attachment materials for their superior electrical and thermal conductivity and capability of low-temperature sintering driven by nano-sized structures. Ag paste was fabricated by simply mixing Ag NPs with general organic solvents without any organic additives. The optimal composition of the Ag paste was selected with 2-butoxyethanol as a solvent and the Ag content with 70 wt. %. The optimized Ag paste showed good processability to the screen-printing method with a low-roughness surface without visible cracks. We obtained a superior shear strength of 55.5 MPa with fast sintering for 150 s at 180 °C. Despite the low sintering temperature and short holding time, Ag NPs could be rapidly melted and densified due to their large surface areas and low-temperature decomposable organic ligands around the Ag NPs. Dense Ag joint also exhibited low porosity under 6 % leads to robust structures. Based on these results, we confirm that our low-temperature sinterable Ag paste has the potential as a promising material for die-attachment of WBG power electronics.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"11 ","pages":"Article 100908"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425000945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, we introduce a simple fabrication method of the Ag paste for low-temperature sintering for die-attachment of WBG power electronics. Silver nanoparticles (Ag NPs) were chosen for the die-attachment materials for their superior electrical and thermal conductivity and capability of low-temperature sintering driven by nano-sized structures. Ag paste was fabricated by simply mixing Ag NPs with general organic solvents without any organic additives. The optimal composition of the Ag paste was selected with 2-butoxyethanol as a solvent and the Ag content with 70 wt. %. The optimized Ag paste showed good processability to the screen-printing method with a low-roughness surface without visible cracks. We obtained a superior shear strength of 55.5 MPa with fast sintering for 150 s at 180 °C. Despite the low sintering temperature and short holding time, Ag NPs could be rapidly melted and densified due to their large surface areas and low-temperature decomposable organic ligands around the Ag NPs. Dense Ag joint also exhibited low porosity under 6 % leads to robust structures. Based on these results, we confirm that our low-temperature sinterable Ag paste has the potential as a promising material for die-attachment of WBG power electronics.

Abstract Image

宽带隙电力电子模具附件用低温烧结银浆料
本文介绍了一种简单的低温烧结银浆料的制备方法。由于银纳米颗粒具有优异的导电性和导热性,并且具有纳米结构驱动的低温烧结性能,因此选择银纳米颗粒作为模具附着材料。在不添加任何有机添加剂的情况下,将银纳米粒子与一般有机溶剂简单混合制备银浆料。以2-丁氧基乙醇为溶剂,银含量为70 wt. %,确定了银膏的最佳组成。优化后的银浆具有良好的丝印加工性能,表面粗糙度低,无明显裂纹。在180℃下快速烧结150 s,获得了55.5 MPa的抗剪强度。尽管烧结温度低,保温时间短,但由于银NPs的表面积大,并且其周围有低温可分解的有机配体,因此可以快速熔化和致密化。致密银接头的孔隙率低于6%,结构坚固。基于这些结果,我们证实了我们的低温烧结银浆料具有作为WBG电力电子器件模具附着材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信