Multilevel Picard approximations overcome the curse of dimensionality when approximating semilinear heat equations with gradient-dependent nonlinearities in Lp-sense

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Tuan Anh Nguyen
{"title":"Multilevel Picard approximations overcome the curse of dimensionality when approximating semilinear heat equations with gradient-dependent nonlinearities in Lp-sense","authors":"Tuan Anh Nguyen","doi":"10.1016/j.cam.2025.116834","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that multilevel Picard approximations are capable of approximating solutions of semilinear heat equations in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-sense, <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>[</mo><mn>2</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, in the case of gradient-dependent, Lipschitz-continuous nonlinearities, in the sense that the computational effort of the multilevel Picard approximations grows at most polynomially in both the dimension <span><math><mi>d</mi></math></span> and the reciprocal <span><math><mrow><mn>1</mn><mo>/</mo><mi>ϵ</mi></mrow></math></span> of the prescribed accuracy <span><math><mi>ϵ</mi></math></span>.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"473 ","pages":"Article 116834"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725003486","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that multilevel Picard approximations are capable of approximating solutions of semilinear heat equations in Lp-sense, p[2,), in the case of gradient-dependent, Lipschitz-continuous nonlinearities, in the sense that the computational effort of the multilevel Picard approximations grows at most polynomially in both the dimension d and the reciprocal 1/ϵ of the prescribed accuracy ϵ.
多能级皮卡德近似克服了在线性意义上近似具有梯度相关非线性的半线性热方程时的维数问题
我们证明了多层皮卡德近似能够近似lp意义上的半线性热方程的解,p∈[2,∞),在梯度依赖的情况下,lipschitz -连续非线性,在这个意义上,多层皮卡德近似的计算努力在维数d和规定精度的倒数1/ λ上最多多项式地增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信