A transformer-based network with second-order pooling for motor imagery EEG classification.

IF 3.8
Jing Jin, Wei Liang, Ren Xu, Weijie Chen, Ruitian Xu, Xingyu Wang, Andrzej Cichocki
{"title":"A transformer-based network with second-order pooling for motor imagery EEG classification.","authors":"Jing Jin, Wei Liang, Ren Xu, Weijie Chen, Ruitian Xu, Xingyu Wang, Andrzej Cichocki","doi":"10.1088/1741-2552/adeae8","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Electroencephalography (EEG) signals can reflect motor intention signals in the brain. In recent years, motor imagery (MI) based brain-computer interfaces (BCIs) have attracted the attention of neuroinformatics researchers. Numerous deep learning models have been developed to decode EEG signals. Although deep learning models, particularly those based on convolutional neural networks, have shown promise in decoding EEG signals, most existing methods focus on attention mechanisms while neglecting high-order statistical dependencies that are critical for accurately capturing the complex structure of EEG data.<i>Approach</i>. To address this limitation, we propose a neural network integrating a transpose-attention mechanism and second-order pooling (SecTNet). The proposed model tackles two fundamental challenges in EEG decoding. It metrics the covariance structure of EEG signals using Riemannian geometry on symmetric positive definite (SPD) matrices, and it enhances the discriminability of these SPD features by introducing attention mechanisms that adaptively model inter-channel dependencies. Specifically, SecTNet is composed of three key components. First, a multi-scale spatial-temporal convolution module extracts detailed local features. Second, a transpose-attention mechanism captures dependency information from the internal interactions between channels. Lastly, a second-order pooling layer captures high-order statistical correlations in the EEG feature space.<i>Main results</i>. SecTNet is evaluated on two publicly available EEG datasets, namely BCI competition IV 2a dataset and OpenBMI dataset. It achieves an average accuracy of 86.88% on the BCI competition IV dataset 2a and 74.99% on the OpenBMI dataset. Moreover, results show that SecTNet maintains competitive performance even when trained on only 50% of the data, demonstrating strong generalization under limited data conditions.<i>Significance</i>. These results demonstrate the broad applicability and effectiveness of SecTNet in enhancing MI-BCI performance. SecTNet provides a robust and generalizable framework for EEG decoding, supporting the development of BCI applications across diverse real-world scenarios.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adeae8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective. Electroencephalography (EEG) signals can reflect motor intention signals in the brain. In recent years, motor imagery (MI) based brain-computer interfaces (BCIs) have attracted the attention of neuroinformatics researchers. Numerous deep learning models have been developed to decode EEG signals. Although deep learning models, particularly those based on convolutional neural networks, have shown promise in decoding EEG signals, most existing methods focus on attention mechanisms while neglecting high-order statistical dependencies that are critical for accurately capturing the complex structure of EEG data.Approach. To address this limitation, we propose a neural network integrating a transpose-attention mechanism and second-order pooling (SecTNet). The proposed model tackles two fundamental challenges in EEG decoding. It metrics the covariance structure of EEG signals using Riemannian geometry on symmetric positive definite (SPD) matrices, and it enhances the discriminability of these SPD features by introducing attention mechanisms that adaptively model inter-channel dependencies. Specifically, SecTNet is composed of three key components. First, a multi-scale spatial-temporal convolution module extracts detailed local features. Second, a transpose-attention mechanism captures dependency information from the internal interactions between channels. Lastly, a second-order pooling layer captures high-order statistical correlations in the EEG feature space.Main results. SecTNet is evaluated on two publicly available EEG datasets, namely BCI competition IV 2a dataset and OpenBMI dataset. It achieves an average accuracy of 86.88% on the BCI competition IV dataset 2a and 74.99% on the OpenBMI dataset. Moreover, results show that SecTNet maintains competitive performance even when trained on only 50% of the data, demonstrating strong generalization under limited data conditions.Significance. These results demonstrate the broad applicability and effectiveness of SecTNet in enhancing MI-BCI performance. SecTNet provides a robust and generalizable framework for EEG decoding, supporting the development of BCI applications across diverse real-world scenarios.

基于变压器的二阶池化网络运动意象脑电分类。
目的:脑电图(EEG)信号能反映脑内运动意图信号。近年来,基于运动意象(MI)的脑机接口(bci)受到了神经信息学研究者的关注。已经开发了许多深度学习模型来解码脑电图信号。尽管深度学习模型,特别是基于卷积神经网络(cnn)的深度学习模型,在解码脑电图信号方面显示出了希望,但大多数现有方法都侧重于注意机制,而忽略了高阶统计依赖关系,而高阶统计依赖关系对于准确捕获脑电图数据的复杂结构至关重要。方法:为了解决这一限制,我们提出了一个集成转置注意机制和二阶池的神经网络(SecTNet)。该模型解决了脑电图解码中的两个基本问题。该方法利用对称正定矩阵上的黎曼几何来度量脑电信号的协方差结构,并通过引入自适应建模信道间依赖关系的注意机制来增强这些对称正定特征的可分辨性。具体来说,SecTNet由三个关键部分组成。首先,多尺度时空卷积模块提取详细的局部特征;其次,转置注意机制从通道之间的内部交互中捕获依赖信息。最后,二阶池化层捕获EEG特征空间中的高阶统计相关性。主要结果:SecTNet在两个公开可用的EEG数据集上进行评估,即BCI Competition IV 2a数据集和OpenBMI数据集。在BCI Competition IV数据集2a上平均准确率为86.88%,在OpenBMI数据集上平均准确率为74.99%。此外,结果表明,即使只对50%的数据进行训练,SecTNet也能保持良好的性能,在有限的数据条件下表现出很强的泛化能力。意义:这些结果表明SecTNet在提高MI-BCI性能方面具有广泛的适用性和有效性。SecTNet为EEG解码提供了一个强大的通用框架,支持跨各种现实场景的BCI应用程序的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信