{"title":"Sparse coding-based multiframe superresolution for efficient synchrotron radiation microspectroscopy.","authors":"Yasuhiko Igarashi, Naoka Nagamura, Masahiro Sekine, Hirokazu Fukidome, Hideitsu Hino, Masato Okada","doi":"10.1186/s11671-025-04291-x","DOIUrl":null,"url":null,"abstract":"<p><p>In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation microspectroscopy images. By reconstructing high-resolution images from multiple low-resolution ones, exposure time is minimized, reducing radiation effects, thermal drift, and sample degradation while preserving spatial resolution. Unlike deep learning-based superresolution methods, which overlook positional misalignment, our approach treats positional shifts as known control parameters, enhancing superresolution accuracy with a small, noisy dataset. Additionally, our sparse coding method learns an optimal dictionary tailored for nanostructure extraction, fine-tuning the SR process to the unique characteristics of the data, even with noise and limited samples. Applied to 3D nanoscale electron spectroscopy for chemical analysis (nano-ESCA) data, our method, utilizing a high-resolution dictionary learned from 3D nano-ESCA datasets, significantly improves image quality, preserving structural details. Unlike state-of-the-art deep learning techniques that require large datasets, our method excels with limited data, making it ideal for real-world scenarios with constrained sample sizes. High-resolution quality can be maintained while reducing the measurement time by over [Formula: see text], highlighting the efficiency of our approach. The results underscore the potential of this superresolution technique to not only advance synchrotron radiation microspectroscopy but also to be adapted for other high-resolution imaging modalities, such as electron microscopy. This approach offers enhanced image quality, reduced exposure times, and improved interpretability of scientific data, making it a versatile tool for overcoming the challenges associated with radiation damage and sample degradation in nanoscale imaging.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"20 1","pages":"102"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229375/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover nano","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s11671-025-04291-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation microspectroscopy images. By reconstructing high-resolution images from multiple low-resolution ones, exposure time is minimized, reducing radiation effects, thermal drift, and sample degradation while preserving spatial resolution. Unlike deep learning-based superresolution methods, which overlook positional misalignment, our approach treats positional shifts as known control parameters, enhancing superresolution accuracy with a small, noisy dataset. Additionally, our sparse coding method learns an optimal dictionary tailored for nanostructure extraction, fine-tuning the SR process to the unique characteristics of the data, even with noise and limited samples. Applied to 3D nanoscale electron spectroscopy for chemical analysis (nano-ESCA) data, our method, utilizing a high-resolution dictionary learned from 3D nano-ESCA datasets, significantly improves image quality, preserving structural details. Unlike state-of-the-art deep learning techniques that require large datasets, our method excels with limited data, making it ideal for real-world scenarios with constrained sample sizes. High-resolution quality can be maintained while reducing the measurement time by over [Formula: see text], highlighting the efficiency of our approach. The results underscore the potential of this superresolution technique to not only advance synchrotron radiation microspectroscopy but also to be adapted for other high-resolution imaging modalities, such as electron microscopy. This approach offers enhanced image quality, reduced exposure times, and improved interpretability of scientific data, making it a versatile tool for overcoming the challenges associated with radiation damage and sample degradation in nanoscale imaging.