Sparse coding-based multiframe superresolution for efficient synchrotron radiation microspectroscopy.

IF 4.5 0 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yasuhiko Igarashi, Naoka Nagamura, Masahiro Sekine, Hirokazu Fukidome, Hideitsu Hino, Masato Okada
{"title":"Sparse coding-based multiframe superresolution for efficient synchrotron radiation microspectroscopy.","authors":"Yasuhiko Igarashi, Naoka Nagamura, Masahiro Sekine, Hirokazu Fukidome, Hideitsu Hino, Masato Okada","doi":"10.1186/s11671-025-04291-x","DOIUrl":null,"url":null,"abstract":"<p><p>In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation microspectroscopy images. By reconstructing high-resolution images from multiple low-resolution ones, exposure time is minimized, reducing radiation effects, thermal drift, and sample degradation while preserving spatial resolution. Unlike deep learning-based superresolution methods, which overlook positional misalignment, our approach treats positional shifts as known control parameters, enhancing superresolution accuracy with a small, noisy dataset. Additionally, our sparse coding method learns an optimal dictionary tailored for nanostructure extraction, fine-tuning the SR process to the unique characteristics of the data, even with noise and limited samples. Applied to 3D nanoscale electron spectroscopy for chemical analysis (nano-ESCA) data, our method, utilizing a high-resolution dictionary learned from 3D nano-ESCA datasets, significantly improves image quality, preserving structural details. Unlike state-of-the-art deep learning techniques that require large datasets, our method excels with limited data, making it ideal for real-world scenarios with constrained sample sizes. High-resolution quality can be maintained while reducing the measurement time by over [Formula: see text], highlighting the efficiency of our approach. The results underscore the potential of this superresolution technique to not only advance synchrotron radiation microspectroscopy but also to be adapted for other high-resolution imaging modalities, such as electron microscopy. This approach offers enhanced image quality, reduced exposure times, and improved interpretability of scientific data, making it a versatile tool for overcoming the challenges associated with radiation damage and sample degradation in nanoscale imaging.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"20 1","pages":"102"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229375/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover nano","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s11671-025-04291-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation microspectroscopy images. By reconstructing high-resolution images from multiple low-resolution ones, exposure time is minimized, reducing radiation effects, thermal drift, and sample degradation while preserving spatial resolution. Unlike deep learning-based superresolution methods, which overlook positional misalignment, our approach treats positional shifts as known control parameters, enhancing superresolution accuracy with a small, noisy dataset. Additionally, our sparse coding method learns an optimal dictionary tailored for nanostructure extraction, fine-tuning the SR process to the unique characteristics of the data, even with noise and limited samples. Applied to 3D nanoscale electron spectroscopy for chemical analysis (nano-ESCA) data, our method, utilizing a high-resolution dictionary learned from 3D nano-ESCA datasets, significantly improves image quality, preserving structural details. Unlike state-of-the-art deep learning techniques that require large datasets, our method excels with limited data, making it ideal for real-world scenarios with constrained sample sizes. High-resolution quality can be maintained while reducing the measurement time by over [Formula: see text], highlighting the efficiency of our approach. The results underscore the potential of this superresolution technique to not only advance synchrotron radiation microspectroscopy but also to be adapted for other high-resolution imaging modalities, such as electron microscopy. This approach offers enhanced image quality, reduced exposure times, and improved interpretability of scientific data, making it a versatile tool for overcoming the challenges associated with radiation damage and sample degradation in nanoscale imaging.

基于稀疏编码的高效同步辐射微光谱多帧超分辨率。
在纳米结构提取中,像同步辐射和电子显微镜这样的先进技术经常受到辐射损伤和长时间曝光产生的电荷伪影的阻碍。提出了一种基于稀疏编码的多帧超分辨率同步辐射微光谱图像增强方法。通过从多个低分辨率图像重建高分辨率图像,最小化曝光时间,减少辐射效应,热漂移和样品降解,同时保持空间分辨率。与忽略位置错位的基于深度学习的超分辨率方法不同,我们的方法将位置移位视为已知的控制参数,通过小而有噪声的数据集提高超分辨率精度。此外,我们的稀疏编码方法学习了一个为纳米结构提取量身定制的最佳字典,即使在噪声和有限样本的情况下,也可以根据数据的独特特征对SR过程进行微调。我们的方法应用于三维纳米级电子能谱化学分析(nano-ESCA)数据,利用从三维纳米esca数据集学习的高分辨率字典,显著提高了图像质量,保留了结构细节。与需要大型数据集的最先进的深度学习技术不同,我们的方法在有限的数据下表现出色,使其成为样本量有限的现实场景的理想选择。高分辨率的质量可以保持,同时减少测量时间超过[公式:见文本],突出了我们的方法的效率。结果强调了这种超分辨率技术的潜力,不仅可以推进同步辐射微光谱学,还可以适用于其他高分辨率成像模式,如电子显微镜。这种方法提高了图像质量,减少了曝光时间,提高了科学数据的可解释性,使其成为克服纳米级成像中辐射损伤和样品降解相关挑战的通用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信