Multi-modal analyses of proteomic measurements associated with type 2 diabetes from the Project Baseline Health Study.

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Alessandra Breschi, Yuliang Wang, Sarah Short, Wilman Luk, David Erani, Pouya Kheradpour, Peter Cimermancic, Gary J Tong, Jean Philippe Martin, Manway Liu, Lulu Cao, Daniel Liu, Ranee Chatterjee, Lydia Coulter Kwee, Thomas M Snyder, Andrew Han, Katherine Drake, Charles C Kim
{"title":"Multi-modal analyses of proteomic measurements associated with type 2 diabetes from the Project Baseline Health Study.","authors":"Alessandra Breschi, Yuliang Wang, Sarah Short, Wilman Luk, David Erani, Pouya Kheradpour, Peter Cimermancic, Gary J Tong, Jean Philippe Martin, Manway Liu, Lulu Cao, Daniel Liu, Ranee Chatterjee, Lydia Coulter Kwee, Thomas M Snyder, Andrew Han, Katherine Drake, Charles C Kim","doi":"10.1038/s43856-025-00964-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Understanding diabetes at the molecular level can help refine diagnostic approaches and personalized treatment efforts.</p><p><strong>Methods: </strong>We generated proteomic data from plasma collected from participants enrolled in the longitudinal observational cohort study Project Baseline Health Study (PBHS) (evaluated cohort, n = 738, 27.9% of the total PBHS cohort), and integrated those data with information from their medical history and laboratory tests to determine diabetes status. We then identified biomarker proteins associated with diabetes status.</p><p><strong>Results: </strong>Here we identify 87 differentially expressed proteins in people with diabetes compared to those without diabetes, 71 of which show higher expression. This proteomic profile, integrated with clinical data into a logistic regression model, can discriminate diabetes status with over 85% balanced accuracy.</p><p><strong>Conclusions: </strong>Our approach indicates that proteomic data can enhance diabetes phenotyping, showing potential for marker-based stratification of diabetes diagnosis. These results suggest that a holistic molecular-clinical approach to diagnosis might help personalize treatments or interventions for people with diabetes.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"272"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222898/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-00964-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Understanding diabetes at the molecular level can help refine diagnostic approaches and personalized treatment efforts.

Methods: We generated proteomic data from plasma collected from participants enrolled in the longitudinal observational cohort study Project Baseline Health Study (PBHS) (evaluated cohort, n = 738, 27.9% of the total PBHS cohort), and integrated those data with information from their medical history and laboratory tests to determine diabetes status. We then identified biomarker proteins associated with diabetes status.

Results: Here we identify 87 differentially expressed proteins in people with diabetes compared to those without diabetes, 71 of which show higher expression. This proteomic profile, integrated with clinical data into a logistic regression model, can discriminate diabetes status with over 85% balanced accuracy.

Conclusions: Our approach indicates that proteomic data can enhance diabetes phenotyping, showing potential for marker-based stratification of diabetes diagnosis. These results suggest that a holistic molecular-clinical approach to diagnosis might help personalize treatments or interventions for people with diabetes.

项目基线健康研究中与2型糖尿病相关的蛋白质组学测量的多模态分析
背景:在分子水平上了解糖尿病有助于改进诊断方法和个性化治疗。方法:我们从纵向观察队列研究项目基线健康研究(PBHS)(评估队列,n = 738,占PBHS总队列的27.9%)的参与者收集的血浆中生成蛋白质组学数据,并将这些数据与他们的病史和实验室检查信息相结合,以确定糖尿病状态。然后,我们确定了与糖尿病状态相关的生物标记蛋白。结果:我们在糖尿病患者和非糖尿病患者中鉴定出87种差异表达蛋白,其中71种表达更高。该蛋白质组学图谱与临床数据整合到逻辑回归模型中,可以以超过85%的平衡准确率区分糖尿病状态。结论:我们的方法表明,蛋白质组学数据可以增强糖尿病表型,显示出基于标记的糖尿病诊断分层的潜力。这些结果表明,一种全面的分子临床诊断方法可能有助于糖尿病患者的个性化治疗或干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信