Exciton Manipulation via Dielectric Environment Engineering in 2D Semiconductors.

IF 3.8
ACS Applied Optical Materials Pub Date : 2025-05-20 eCollection Date: 2025-06-27 DOI:10.1021/acsaom.5c00105
Raziel Itzhak, Nathan Suleymanov, Boris Minkovich, Liana Kartvelishvili, Vladislav Kostianovski, Roman Korobko, Alex Hayat, Ilya Goykhman
{"title":"Exciton Manipulation via Dielectric Environment Engineering in 2D Semiconductors.","authors":"Raziel Itzhak, Nathan Suleymanov, Boris Minkovich, Liana Kartvelishvili, Vladislav Kostianovski, Roman Korobko, Alex Hayat, Ilya Goykhman","doi":"10.1021/acsaom.5c00105","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional (2D) semiconductors are promising for photonic applications due to their exceptional optoelectronic properties, including large exciton binding energy, strong spin-orbit coupling, and potential integration with the standard complementary silicon-oxide-semiconductor (CMOS) technology. The dielectric environment can significantly affect the photoluminescence (PL) spectra of transition metal dichalcogenide (TMD) monolayers by modulating excitonic properties such as optical transitions and binding energies. Specifically, substrates with higher dielectric permittivity reduce exciton binding energy and the quasiparticle bandgap. Doping and the charge carrier concentration can further modify the emitted spectra by affecting the PL excitonic content. Increased doping can enhance trion formation and bandgap renormalization phenomena, leading to PL spectral shifts that depend on the semiconductor type. This study systematically investigates the substrate-induced dielectric screening, doping, and trapped charges in CVD-grown n-type 1L-WS<sub>2</sub> and p-type 1L-WSe<sub>2</sub> transferred onto CMOS-relevant SiO<sub>2</sub> and HfO<sub>2</sub> dielectrics. Our results show that p-type 1L-WSe<sub>2</sub> exhibits higher PL intensity and red-shifted trion emission on HfO<sub>2</sub>, whereas n-type 1L-WS<sub>2</sub> shows a blue-shifted, lower-intensity PL for a similar dielectric environment. The difference arises from the interplay of the semiconductor type, doping, dielectric screening, and charge carrier concentration. We demonstrate that suspending the monolayers at the nanoscale enhances PL by reducing nonradiative recombination, enabling controlled micro-PL patterning and the formation of localized emission hot spots. Our results provide valuable insights for the development of next-generation CMOS-compatible optoelectronic devices.</p>","PeriodicalId":29803,"journal":{"name":"ACS Applied Optical Materials","volume":"3 6","pages":"1330-1338"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12210256/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Optical Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsaom.5c00105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/27 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) semiconductors are promising for photonic applications due to their exceptional optoelectronic properties, including large exciton binding energy, strong spin-orbit coupling, and potential integration with the standard complementary silicon-oxide-semiconductor (CMOS) technology. The dielectric environment can significantly affect the photoluminescence (PL) spectra of transition metal dichalcogenide (TMD) monolayers by modulating excitonic properties such as optical transitions and binding energies. Specifically, substrates with higher dielectric permittivity reduce exciton binding energy and the quasiparticle bandgap. Doping and the charge carrier concentration can further modify the emitted spectra by affecting the PL excitonic content. Increased doping can enhance trion formation and bandgap renormalization phenomena, leading to PL spectral shifts that depend on the semiconductor type. This study systematically investigates the substrate-induced dielectric screening, doping, and trapped charges in CVD-grown n-type 1L-WS2 and p-type 1L-WSe2 transferred onto CMOS-relevant SiO2 and HfO2 dielectrics. Our results show that p-type 1L-WSe2 exhibits higher PL intensity and red-shifted trion emission on HfO2, whereas n-type 1L-WS2 shows a blue-shifted, lower-intensity PL for a similar dielectric environment. The difference arises from the interplay of the semiconductor type, doping, dielectric screening, and charge carrier concentration. We demonstrate that suspending the monolayers at the nanoscale enhances PL by reducing nonradiative recombination, enabling controlled micro-PL patterning and the formation of localized emission hot spots. Our results provide valuable insights for the development of next-generation CMOS-compatible optoelectronic devices.

基于介电环境工程的二维半导体激子操纵。
二维(2D)半导体由于其独特的光电特性,包括大的激子结合能,强的自旋轨道耦合,以及与标准互补氧化硅半导体(CMOS)技术的潜在集成,在光子应用方面前景广阔。介质环境可以通过调节过渡金属二硫化物(TMD)单层的光致发光(PL)光谱,如光跃迁和结合能。具体来说,具有较高介电常数的衬底降低了激子结合能和准粒子带隙。掺杂和载流子浓度可以通过影响PL激子含量进一步改变发射光谱。增加掺杂可以增强三角离子形成和带隙重整化现象,导致依赖于半导体类型的PL光谱移位。本研究系统地研究了cvd生长的n型1L-WS2和p型1L-WSe2转移到cmos相关的SiO2和HfO2介电体上的衬底诱导的介电屏蔽、掺杂和捕获电荷。我们的研究结果表明,p型1L-WS2在HfO2上表现出更高的PL强度和红移的trion发射,而n型1L-WS2在相似的介电环境下表现出蓝移的低强度PL。这种差异是由半导体类型、掺杂、介电屏蔽和载流子浓度的相互作用引起的。我们证明,在纳米尺度上悬浮单层可以通过减少非辐射重组来增强发光,从而实现可控的微发光模式和局部发光热点的形成。我们的研究结果为下一代cmos兼容光电器件的开发提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Optical Materials
ACS Applied Optical Materials 材料科学-光学材料-
CiteScore
1.10
自引率
0.00%
发文量
0
期刊介绍: ACS Applied Optical Materials is an international and interdisciplinary forum to publish original experimental and theoretical including simulation and modeling research in optical materials complementing the ACS Applied Materials portfolio. With a focus on innovative applications ACS Applied Optical Materials also complements and expands the scope of existing ACS publications that focus on fundamental aspects of the interaction between light and matter in materials science including ACS Photonics Macromolecules Journal of Physical Chemistry C ACS Nano and Nano Letters.The scope of ACS Applied Optical Materials includes high quality research of an applied nature that integrates knowledge in materials science chemistry physics optical science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信