Influence of cognitive networks and task performance on fMRI-based state classification using DNN models.

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Murat Kucukosmanoglu, Javier O Garcia, Justin Brooks, Kanika Bansal
{"title":"Influence of cognitive networks and task performance on fMRI-based state classification using DNN models.","authors":"Murat Kucukosmanoglu, Javier O Garcia, Justin Brooks, Kanika Bansal","doi":"10.1038/s41598-025-05690-x","DOIUrl":null,"url":null,"abstract":"<p><p>Deep neural networks (DNNs) excel at extracting insights from complex data across various fields, however, their application in cognitive neuroscience remains limited, largely due to the lack of approaches with interpretability. Here, we employ two different and complementary DNN models, a one-dimensional convolutional neural network (1D-CNN) and a bidirectional long short-term memory network (BiLSTM), to classify cognitive task states from fMRI data, focusing on the cognitive underpinnings of the classification. The 1D-CNN achieved an overall accuracy of 81% (Macro AUC = 0.96), while the BiLSTM reached 78% (Macro AUC = 0.95). Despite the architectural differences, both models demonstrated a robust relationship between prediction accuracy and individual cognitive performance (p < 0.05 for 1D-CNN, and p < 0.001 for BiLSTM), with lower classification accuracy observed in individuals with poorer task performance. Feature importance analysis highlighted the dominance of visual networks, suggesting that task-driven state differences are primarily encoded in visual processing. Attention and control networks also showed relatively high importance. We observed individual trait-based effects and subtle model-specific differences: 1D-CNN yielded slightly better overall performance, while BiLSTM showed better sensitivity for individual behavior. This study highlights the application of interpretable DNNs in revealing cognitive mechanisms associated with task performance and individual variability.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"23689"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-05690-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Deep neural networks (DNNs) excel at extracting insights from complex data across various fields, however, their application in cognitive neuroscience remains limited, largely due to the lack of approaches with interpretability. Here, we employ two different and complementary DNN models, a one-dimensional convolutional neural network (1D-CNN) and a bidirectional long short-term memory network (BiLSTM), to classify cognitive task states from fMRI data, focusing on the cognitive underpinnings of the classification. The 1D-CNN achieved an overall accuracy of 81% (Macro AUC = 0.96), while the BiLSTM reached 78% (Macro AUC = 0.95). Despite the architectural differences, both models demonstrated a robust relationship between prediction accuracy and individual cognitive performance (p < 0.05 for 1D-CNN, and p < 0.001 for BiLSTM), with lower classification accuracy observed in individuals with poorer task performance. Feature importance analysis highlighted the dominance of visual networks, suggesting that task-driven state differences are primarily encoded in visual processing. Attention and control networks also showed relatively high importance. We observed individual trait-based effects and subtle model-specific differences: 1D-CNN yielded slightly better overall performance, while BiLSTM showed better sensitivity for individual behavior. This study highlights the application of interpretable DNNs in revealing cognitive mechanisms associated with task performance and individual variability.

认知网络和任务性能对基于深度神经网络模型的fmri状态分类的影响。
深度神经网络(dnn)擅长从各个领域的复杂数据中提取见解,然而,它们在认知神经科学中的应用仍然有限,主要是由于缺乏可解释性的方法。在这里,我们采用两种不同且互补的深度神经网络模型,一维卷积神经网络(1D-CNN)和双向长短期记忆网络(BiLSTM),从fMRI数据中对认知任务状态进行分类,重点关注分类的认知基础。1D-CNN的总体准确率为81%(宏观AUC = 0.96), BiLSTM的总体准确率为78%(宏观AUC = 0.95)。尽管在结构上存在差异,但这两个模型都证明了预测准确性与个体认知表现之间的牢固关系
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信