Artificial Intelligence-Powered Insights into Polyclonality and Tumor Evolution.

IF 10.7 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2025-07-02 eCollection Date: 2025-01-01 DOI:10.34133/research.0765
Hong Zhao, Trey Ideker, Stephen T C Wong
{"title":"Artificial Intelligence-Powered Insights into Polyclonality and Tumor Evolution.","authors":"Hong Zhao, Trey Ideker, Stephen T C Wong","doi":"10.34133/research.0765","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have revealed that polyclonality-where multiple distinct subclones cooperate during early tumor development-is a critical feature of tumor evolution, as demonstrated by Sadien et al. and Lu et al. in <i>Nature</i> (October 2024). These findings show that early polyclonal interactions can overcome fitness barriers, ultimately transitioning to monoclonality as dominant clones emerge. Understanding and targeting these interclonal dynamics offers new therapeutic opportunities. In this perspective, we outline how computational modeling and artificial intelligence (AI) tools can provide deeper insights into tumor polyclonality and identify actionable therapeutic strategies. By applying ligand-receptor interaction analysis, clonal trajectory reconstruction, network and pathway modeling, and spatial analysis, researchers can prioritize communication hubs, evolutionary bottlenecks, and microenvironmental niches that sustain tumor progression. These approaches, when integrated with experimental validation, offer a translational pathway from foundational discoveries to personalized cancer treatments aimed at disrupting cooperative subclonal ecosystems and preventing malignant progression. We commend the recent <i>Nature</i> publications, \"Polyclonality overcomes fitness barriers in Apc-driven tumorigenesis\" by Sadien et al. [1] and \"Polyclonal-to-monoclonal transition in colorectal precancerous evolution\" by Lu et al. [2], both featured on 2024 October 30. These groundbreaking studies employed distinct lineage tracing methods to investigate the origins and evolutionary dynamics of colorectal and intestinal tumorigenesis. Despite their different approaches, both studies reached convergent conclusions: Polyclonality plays a pivotal role in the early stages of tumor development, providing critical insights into how diverse cellular populations collaborate to overcome fitness barriers and drive tumor progression.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0765"},"PeriodicalIF":10.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12217929/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0765","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Recent studies have revealed that polyclonality-where multiple distinct subclones cooperate during early tumor development-is a critical feature of tumor evolution, as demonstrated by Sadien et al. and Lu et al. in Nature (October 2024). These findings show that early polyclonal interactions can overcome fitness barriers, ultimately transitioning to monoclonality as dominant clones emerge. Understanding and targeting these interclonal dynamics offers new therapeutic opportunities. In this perspective, we outline how computational modeling and artificial intelligence (AI) tools can provide deeper insights into tumor polyclonality and identify actionable therapeutic strategies. By applying ligand-receptor interaction analysis, clonal trajectory reconstruction, network and pathway modeling, and spatial analysis, researchers can prioritize communication hubs, evolutionary bottlenecks, and microenvironmental niches that sustain tumor progression. These approaches, when integrated with experimental validation, offer a translational pathway from foundational discoveries to personalized cancer treatments aimed at disrupting cooperative subclonal ecosystems and preventing malignant progression. We commend the recent Nature publications, "Polyclonality overcomes fitness barriers in Apc-driven tumorigenesis" by Sadien et al. [1] and "Polyclonal-to-monoclonal transition in colorectal precancerous evolution" by Lu et al. [2], both featured on 2024 October 30. These groundbreaking studies employed distinct lineage tracing methods to investigate the origins and evolutionary dynamics of colorectal and intestinal tumorigenesis. Despite their different approaches, both studies reached convergent conclusions: Polyclonality plays a pivotal role in the early stages of tumor development, providing critical insights into how diverse cellular populations collaborate to overcome fitness barriers and drive tumor progression.

人工智能驱动的多克隆性和肿瘤进化研究。
最近的研究表明,正如Sadien等人和Lu等人在Nature(2024年10月)上所证明的那样,多克隆性(多个不同的亚克隆在肿瘤早期发展过程中合作)是肿瘤进化的一个关键特征。这些发现表明,早期的多克隆相互作用可以克服适应度障碍,最终随着优势克隆的出现而过渡到单克隆。了解和靶向这些克隆间动力学提供了新的治疗机会。从这个角度来看,我们概述了计算建模和人工智能(AI)工具如何为肿瘤多克隆性提供更深入的见解,并确定可行的治疗策略。通过应用配体-受体相互作用分析、克隆轨迹重建、网络和通路建模以及空间分析,研究人员可以优先考虑维持肿瘤进展的通信枢纽、进化瓶颈和微环境生态位。当与实验验证相结合时,这些方法提供了从基础发现到个性化癌症治疗的转化途径,旨在破坏合作亚克隆生态系统并防止恶性进展。我们赞扬最近发表在《自然》杂志上的文章,Sadien等人发表的“多克隆性克服apc驱动的肿瘤发生中的适应度障碍”和Lu等人发表的“结直肠癌前进化中的多克隆向单克隆过渡”,这两篇文章都刊登在2024年10月30日。这些开创性的研究采用不同的谱系追踪方法来研究结直肠和肠道肿瘤发生的起源和进化动力学。尽管他们的方法不同,但两项研究都得出了一致的结论:多克隆性在肿瘤发展的早期阶段起着关键作用,为不同的细胞群体如何合作克服适应性障碍和驱动肿瘤进展提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信