{"title":"A graphic and command line protocol for quick and accurate comparisons of protein and nucleic acid structures with US-align.","authors":"Chengxin Zhang, Lydia Freddolino, Yang Zhang","doi":"10.1038/s41596-025-01189-x","DOIUrl":null,"url":null,"abstract":"<p><p>With the success of structural biology and the advancements in deep-learning-based structure predictions, rapid and accurate structural comparisons among macromolecular structures have become increasingly important in structural bioinformatics. US-align is a highly efficient, versatile, open-source program for sequential and nonsequential structure comparisons of proteins, RNAs and DNAs in pairwise and multiple alignment forms and applicable to both monomeric and multimeric complex structures. The core algorithm of US-align is built on a highly optimized, iterative superimposition and dynamic programming alignment process, guided with a unified and sequence length-independent scoring function, TM-score. The unique design of US-align not only ensures its high accuracy and speed compared with other state-of-the-art methods designed for specific alignment tasks but also makes it the only protocol that can be applied to multiple alignment tasks and allow a structural comparison across different molecular types, the latter of which is critical for template-based heteromolecular structure prediction and function annotations. Here we describe how to install and effectively utilize US-align as a command line tool, as an online web server, and as a plugin to commonly used molecular graphic systems such as PyMOL. US-align installation takes a few minutes to setup, while the actual alignment implementation can be completed typically within 1 s.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01189-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
With the success of structural biology and the advancements in deep-learning-based structure predictions, rapid and accurate structural comparisons among macromolecular structures have become increasingly important in structural bioinformatics. US-align is a highly efficient, versatile, open-source program for sequential and nonsequential structure comparisons of proteins, RNAs and DNAs in pairwise and multiple alignment forms and applicable to both monomeric and multimeric complex structures. The core algorithm of US-align is built on a highly optimized, iterative superimposition and dynamic programming alignment process, guided with a unified and sequence length-independent scoring function, TM-score. The unique design of US-align not only ensures its high accuracy and speed compared with other state-of-the-art methods designed for specific alignment tasks but also makes it the only protocol that can be applied to multiple alignment tasks and allow a structural comparison across different molecular types, the latter of which is critical for template-based heteromolecular structure prediction and function annotations. Here we describe how to install and effectively utilize US-align as a command line tool, as an online web server, and as a plugin to commonly used molecular graphic systems such as PyMOL. US-align installation takes a few minutes to setup, while the actual alignment implementation can be completed typically within 1 s.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.