Daniel Steckhahn, Shane A Fiorenza, Ellinor Tai, Scott Forth, Peter R Kramer, Meredith Betterton
{"title":"PRC1 resists microtubule sliding in two distinct resistive modes due to variations in the separation between overlapping microtubules.","authors":"Daniel Steckhahn, Shane A Fiorenza, Ellinor Tai, Scott Forth, Peter R Kramer, Meredith Betterton","doi":"10.1091/mbc.E25-06-0288","DOIUrl":null,"url":null,"abstract":"<p><p>Cross-linked cytoskeletal filament networks provide cells with a mechanism to regulate cellular mechanics and force transmission. An example in the microtubule cytoskeleton is mitotic spindle elongation. The three-dimensional geometry of these networks, including the overlap length and lateral microtubule spacing, likely controls how forces can be regulated, but how these parameters evolve during filament sliding is unknown. Recent evidence suggests that the cross-linker PRC1 can resist microtubule sliding by two distinct modes: a braking mode and a less resistive coasting mode. To explore how molecular-scale mechanisms influence network geometry in this system, we developed a computational model of sliding microtubule pairs cross-linked by PRC1 that reproduces the experimentally observed braking and coasting modes. Surprisingly, we found that the braking mode was associated with a substantially smaller lateral separation between the cross-linked microtubules than the coasting mode. This closer separation aligns the PRC1-mediated forces against sliding, increasing the resistive PRC1 force and dramatically reducing sliding speed. The model also finds an emergent similar average sliding speed due to PRC1 resistance, because higher initial sliding speed favors the transition to braking. Together, our results highlight the importance of the three-dimensional geometric relationships between cross-linkers and microtubules.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar115"},"PeriodicalIF":2.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483375/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E25-06-0288","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cross-linked cytoskeletal filament networks provide cells with a mechanism to regulate cellular mechanics and force transmission. An example in the microtubule cytoskeleton is mitotic spindle elongation. The three-dimensional geometry of these networks, including the overlap length and lateral microtubule spacing, likely controls how forces can be regulated, but how these parameters evolve during filament sliding is unknown. Recent evidence suggests that the cross-linker PRC1 can resist microtubule sliding by two distinct modes: a braking mode and a less resistive coasting mode. To explore how molecular-scale mechanisms influence network geometry in this system, we developed a computational model of sliding microtubule pairs cross-linked by PRC1 that reproduces the experimentally observed braking and coasting modes. Surprisingly, we found that the braking mode was associated with a substantially smaller lateral separation between the cross-linked microtubules than the coasting mode. This closer separation aligns the PRC1-mediated forces against sliding, increasing the resistive PRC1 force and dramatically reducing sliding speed. The model also finds an emergent similar average sliding speed due to PRC1 resistance, because higher initial sliding speed favors the transition to braking. Together, our results highlight the importance of the three-dimensional geometric relationships between cross-linkers and microtubules.
期刊介绍:
MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.