Cardiac diffusion kurtosis imaging in the human heart in vivo using 300 mT/m gradients.

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Maryam Afzali, Sam Coveney, Lars Mueller, Sarah Jones, Fabrizio Fasano, C John Evans, Irvin Teh, Erica Dall'Armellina, Filip Szczepankiewicz, Derek K Jones, Jürgen E Schneider
{"title":"Cardiac diffusion kurtosis imaging in the human heart in vivo using 300 mT/m gradients.","authors":"Maryam Afzali, Sam Coveney, Lars Mueller, Sarah Jones, Fabrizio Fasano, C John Evans, Irvin Teh, Erica Dall'Armellina, Filip Szczepankiewicz, Derek K Jones, Jürgen E Schneider","doi":"10.1002/mrm.30626","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Diffusion tensor imaging (DTI) is commonly used in cardiac diffusion magnetic resonance imaging (dMRI). However, the tissue's microstructure (cells, membranes, etc.) restricts the movement of the water molecules, making the spin displacements deviate from Gaussian behavior. This effect may be observed with diffusion kurtosis imaging (DKI) using sufficiently high b-values ( <math> <semantics><mrow><mi>b</mi> <mo>></mo> <mn>450</mn> <mspace></mspace> <msup><mrow><mtext>s/mm</mtext></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> <annotation>$$ \\mathrm{b}>450\\kern0.2em \\mathrm{s}/{\\mathrm{mm}}^2 $$</annotation></semantics> </math> ), which are presently outside the realm of routine cardiac dMRI due to the limited gradient strength of clinical scanners. The Connectom scanner with <math> <semantics> <mrow> <msub><mrow><mi>G</mi></mrow> <mrow><mi>max</mi></mrow> </msub> <mo>=</mo> <mn>300</mn> <mspace></mspace> <mi>mT</mi> <mo>/</mo> <mi>m</mi></mrow> <annotation>$$ {\\mathrm{G}}_{\\mathrm{max}}=300\\kern0.2em \\mathrm{mT}/\\mathrm{m} $$</annotation></semantics> </math> enables high b-values at echo times (TE) similar to DTI on standard clinical scanners, therefore facilitating cardiac DKI in humans.</p><p><strong>Methods: </strong>Cardiac-gated, second-order motion-compensated dMRI was performed with <math> <semantics> <mrow> <msub><mrow><mi>b</mi></mrow> <mrow><mi>max</mi></mrow> </msub> <mo>=</mo> <mn>1350</mn> <mspace></mspace> <mi>s</mi> <mo>/</mo> <mi>m</mi> <msup><mrow><mi>m</mi></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> <annotation>$$ {\\mathrm{b}}_{\\mathrm{m}\\mathrm{ax}}=1350\\kern0.2em \\mathrm{s}/\\mathrm{m}{\\mathrm{m}}^2 $$</annotation></semantics> </math> in 10 healthy volunteers on a 3T MRI scanner with <math> <semantics> <mrow> <msub><mrow><mi>G</mi></mrow> <mrow><mi>max</mi></mrow> </msub> <mo>=</mo> <mn>300</mn> <mspace></mspace> <mi>mT</mi> <mo>/</mo> <mi>m</mi></mrow> <annotation>$$ {\\mathrm{G}}_{\\mathrm{max}}=300\\kern0.2em \\mathrm{mT}/\\mathrm{m} $$</annotation></semantics> </math> . The signal was fitted to a cumulant expansion up to and including the kurtosis term, and diffusion metrics such as fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK), axial kurtosis (AK), and radial kurtosis (RK) were calculated.</p><p><strong>Results: </strong>We demonstrate deviation of the signal from monoexponential decay for b-values <math> <semantics><mrow><mo>></mo> <mn>450</mn> <mspace></mspace> <mi>s</mi> <mo>/</mo> <mi>m</mi> <msup><mrow><mi>m</mi></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> <annotation>$$ >450\\kern0.2em \\mathrm{s}/\\mathrm{m}{\\mathrm{m}}^2 $$</annotation></semantics> </math> ( <math> <semantics><mrow><mi>MK</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>32</mn> <mo>±</mo> <mn>0</mn> <mo>.</mo> <mn>03</mn></mrow> <annotation>$$ \\mathrm{MK}=0.32\\pm 0.03 $$</annotation></semantics> </math> ). Radial kurtosis ( <math> <semantics><mrow><mi>RK</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>35</mn> <mo>±</mo> <mn>0</mn> <mo>.</mo> <mn>04</mn></mrow> <annotation>$$ \\mathrm{RK}=0.35\\pm 0.04 $$</annotation></semantics> </math> ) was observed slightly larger than axial kurtosis ( <math> <semantics><mrow><mi>AK</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>27</mn> <mo>±</mo> <mn>0</mn> <mo>.</mo> <mn>02</mn></mrow> <annotation>$$ \\mathrm{AK}=0.27\\pm 0.02 $$</annotation></semantics> </math> ), and the difference is statistically significant ( <math> <semantics><mrow><mi>RK</mi> <mo>-</mo> <mi>AK</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>08</mn> <mo>±</mo> <mn>0</mn> <mo>.</mo> <mn>04</mn></mrow> <annotation>$$ \\mathrm{RK}-\\mathrm{AK}=0.08\\pm 0.04 $$</annotation></semantics> </math> , <math> <semantics><mrow><mi>p</mi> <mo>=</mo> <mn>2</mn> <mi>e</mi> <mo>-</mo> <mn>4</mn></mrow> <annotation>$$ \\mathrm{p}=2\\mathrm{e}-4 $$</annotation></semantics> </math> ).</p><p><strong>Conclusion: </strong>This work demonstrates the feasibility of quantifying kurtosis effect in the human heart in vivo (at an echo time shorter than typical TEs reported for cardiac DTI), using high-performance gradient systems (which are 4-8 times stronger than on standard clinical scanners). Our work lays the foundation for exploring new biomarkers in cardiac dMRI beyond DTI.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30626","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Diffusion tensor imaging (DTI) is commonly used in cardiac diffusion magnetic resonance imaging (dMRI). However, the tissue's microstructure (cells, membranes, etc.) restricts the movement of the water molecules, making the spin displacements deviate from Gaussian behavior. This effect may be observed with diffusion kurtosis imaging (DKI) using sufficiently high b-values ( b > 450 s/mm 2 $$ \mathrm{b}>450\kern0.2em \mathrm{s}/{\mathrm{mm}}^2 $$ ), which are presently outside the realm of routine cardiac dMRI due to the limited gradient strength of clinical scanners. The Connectom scanner with G max = 300 mT / m $$ {\mathrm{G}}_{\mathrm{max}}=300\kern0.2em \mathrm{mT}/\mathrm{m} $$ enables high b-values at echo times (TE) similar to DTI on standard clinical scanners, therefore facilitating cardiac DKI in humans.

Methods: Cardiac-gated, second-order motion-compensated dMRI was performed with b max = 1350 s / m m 2 $$ {\mathrm{b}}_{\mathrm{m}\mathrm{ax}}=1350\kern0.2em \mathrm{s}/\mathrm{m}{\mathrm{m}}^2 $$ in 10 healthy volunteers on a 3T MRI scanner with G max = 300 mT / m $$ {\mathrm{G}}_{\mathrm{max}}=300\kern0.2em \mathrm{mT}/\mathrm{m} $$ . The signal was fitted to a cumulant expansion up to and including the kurtosis term, and diffusion metrics such as fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK), axial kurtosis (AK), and radial kurtosis (RK) were calculated.

Results: We demonstrate deviation of the signal from monoexponential decay for b-values > 450 s / m m 2 $$ >450\kern0.2em \mathrm{s}/\mathrm{m}{\mathrm{m}}^2 $$ ( MK = 0 . 32 ± 0 . 03 $$ \mathrm{MK}=0.32\pm 0.03 $$ ). Radial kurtosis ( RK = 0 . 35 ± 0 . 04 $$ \mathrm{RK}=0.35\pm 0.04 $$ ) was observed slightly larger than axial kurtosis ( AK = 0 . 27 ± 0 . 02 $$ \mathrm{AK}=0.27\pm 0.02 $$ ), and the difference is statistically significant ( RK - AK = 0 . 08 ± 0 . 04 $$ \mathrm{RK}-\mathrm{AK}=0.08\pm 0.04 $$ , p = 2 e - 4 $$ \mathrm{p}=2\mathrm{e}-4 $$ ).

Conclusion: This work demonstrates the feasibility of quantifying kurtosis effect in the human heart in vivo (at an echo time shorter than typical TEs reported for cardiac DTI), using high-performance gradient systems (which are 4-8 times stronger than on standard clinical scanners). Our work lays the foundation for exploring new biomarkers in cardiac dMRI beyond DTI.

使用300 mT/m梯度在人体内心脏扩散峰度成像。
目的:弥散张量成像(DTI)是心脏弥散磁共振成像(dMRI)的常用手段。然而,组织的微观结构(细胞、膜等)限制了水分子的运动,使自旋位移偏离高斯行为。这种效果可以通过弥散峰度成像(DKI)观察到,使用足够高的b值(b > 450 s/ mm2 $$ \mathrm{b}>450\kern0.2em \mathrm{s}/{\mathrm{mm}}^2 $$),目前由于临床扫描仪的梯度强度有限,这超出了常规心脏dMRI的范围。Connectom扫描仪的最大G值为300 mT / m $$ {\mathrm{G}}_{\mathrm{max}}=300\kern0.2em \mathrm{mT}/\mathrm{m} $$,可在回波时间(TE)实现与标准临床扫描仪上的DTI相似的高b值,从而促进人类心脏DKI。方法:对10名健康志愿者在3T MRI扫描仪上进行心脏门控、二阶运动补偿dMRI,最大心率为1350 s / m m2 $$ {\mathrm{b}}_{\mathrm{m}\mathrm{ax}}=1350\kern0.2em \mathrm{s}/\mathrm{m}{\mathrm{m}}^2 $$,最大心率为300 mT / m $$ {\mathrm{G}}_{\mathrm{max}}=300\kern0.2em \mathrm{mT}/\mathrm{m} $$。将信号拟合为包括峰度项的累积展开,并计算分数各向异性(FA)、平均扩散率(MD)、平均峰度(MK)、轴向峰度(AK)和径向峰度(RK)等扩散指标。结果:我们证明了b值> 450 s / m m 2 $$ >450\kern0.2em \mathrm{s}/\mathrm{m}{\mathrm{m}}^2 $$ (MK = 0)时单指数衰减信号的偏差。32±0。03 $$ \mathrm{MK}=0.32\pm 0.03 $$)。径向峰度(RK = 0)35±0。04 $$ \mathrm{RK}=0.35\pm 0.04 $$)略大于轴向峰度(AK = 0)。27±0。02 $$ \mathrm{AK}=0.27\pm 0.02 $$),差异有统计学意义(RK - AK = 0。08±0。04 $$ \mathrm{RK}-\mathrm{AK}=0.08\pm 0.04 $$, p = 2 e - 4 $$ \mathrm{p}=2\mathrm{e}-4 $$)。结论:这项工作证明了使用高性能梯度系统(比标准临床扫描仪强4-8倍)在体内量化人类心脏峰度效应的可行性(回声时间比心脏DTI报道的典型TEs短)。我们的工作为探索DTI以外的心脏dMRI新生物标志物奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信