Development of a single-center predictive model for conventional in vitro fertilization outcomes excluding total fertilization failure: implications for protocol selection.

IF 4.2 3区 医学 Q1 REPRODUCTIVE BIOLOGY
Hai Wang, Haojie Pan, Zitong Xu, Xianjue Zheng, Shuqi Xia, Jiayong Zheng
{"title":"Development of a single-center predictive model for conventional in vitro fertilization outcomes excluding total fertilization failure: implications for protocol selection.","authors":"Hai Wang, Haojie Pan, Zitong Xu, Xianjue Zheng, Shuqi Xia, Jiayong Zheng","doi":"10.1186/s13048-025-01728-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To develop a multidimensional clinical indicator-based prediction model for identifying high-risk patients with fertilization failure conventional in vitro fertilization (c-IVF) cycles, thereby optimizing therapeutic decision-making.</p><p><strong>Methods: </strong>This retrospective single-center study analyzed 691 cycles (594 c-IVF, 97 rescue ICSI) from January 2019 to August 2024. Key parameters included female age, BMI, male semen parameters (sperm concentration, total progressive motile sperm count [TPMC], DNA fragmentation index [DFI]), and infertility duration. Three machine learning models (logistic regression, random forest, XGBoost) were developed and validated using a nested cross-validation framework with SMOTE oversampling.</p><p><strong>Results: </strong>The logistic regression model demonstrated superior predictive performance (mean AUC = 0.734 ± 0.049), significantly outperforming random forest (0.714 ± 0.034) and XGBoost (0.697 ± 0.038). Significant predictors included protective factors-male age (OR = 0.642, 95%CI:0.598-0.689) and TPMC (OR = 0.428, 95%CI:0.392-0.466), and risk factors-female BMI (OR = 1.268, 95%CI:1.191-1.351) and DFI (OR = 1.362, 95%CI:1.274-1.455). The nomogram showed moderate-to-high discriminative power (C-index = 0.722, 95%CI:0.667-0.773) upon internal validation. Decision curve analysis confirmed clinical utility at threshold probabilities between 0.05 and 0.60.</p><p><strong>Conclusions: </strong>The logistic regression-based prediction model exhibits robust performance in assessing c-IVF fertilization failure risk. While optimized for our center's specific clinical context, external multicenter validation is required to confirm broader clinical applicability.</p>","PeriodicalId":16610,"journal":{"name":"Journal of Ovarian Research","volume":"18 1","pages":"138"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12220611/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovarian Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13048-025-01728-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To develop a multidimensional clinical indicator-based prediction model for identifying high-risk patients with fertilization failure conventional in vitro fertilization (c-IVF) cycles, thereby optimizing therapeutic decision-making.

Methods: This retrospective single-center study analyzed 691 cycles (594 c-IVF, 97 rescue ICSI) from January 2019 to August 2024. Key parameters included female age, BMI, male semen parameters (sperm concentration, total progressive motile sperm count [TPMC], DNA fragmentation index [DFI]), and infertility duration. Three machine learning models (logistic regression, random forest, XGBoost) were developed and validated using a nested cross-validation framework with SMOTE oversampling.

Results: The logistic regression model demonstrated superior predictive performance (mean AUC = 0.734 ± 0.049), significantly outperforming random forest (0.714 ± 0.034) and XGBoost (0.697 ± 0.038). Significant predictors included protective factors-male age (OR = 0.642, 95%CI:0.598-0.689) and TPMC (OR = 0.428, 95%CI:0.392-0.466), and risk factors-female BMI (OR = 1.268, 95%CI:1.191-1.351) and DFI (OR = 1.362, 95%CI:1.274-1.455). The nomogram showed moderate-to-high discriminative power (C-index = 0.722, 95%CI:0.667-0.773) upon internal validation. Decision curve analysis confirmed clinical utility at threshold probabilities between 0.05 and 0.60.

Conclusions: The logistic regression-based prediction model exhibits robust performance in assessing c-IVF fertilization failure risk. While optimized for our center's specific clinical context, external multicenter validation is required to confirm broader clinical applicability.

Abstract Image

Abstract Image

Abstract Image

排除全受精失败的常规体外受精结果单中心预测模型的建立:对方案选择的影响。
目的:建立基于临床指标的多维度体外受精(c-IVF)周期受精失败高危患者预测模型,从而优化治疗决策。方法:本回顾性单中心研究分析了2019年1月至2024年8月的691个周期(594个c-IVF, 97个抢救性ICSI)。关键参数包括女性年龄、BMI、男性精液参数(精子浓度、总进行性活动精子数[TPMC]、DNA片段化指数[DFI])、不孕症持续时间。开发了三种机器学习模型(逻辑回归、随机森林、XGBoost),并使用SMOTE过采样的嵌套交叉验证框架进行了验证。结果:logistic回归模型的平均AUC = 0.734±0.049,显著优于随机森林模型(0.714±0.034)和XGBoost模型(0.697±0.038)。重要的预测因素包括保护因素-男性年龄(OR = 0.642, 95%CI:0.598-0.689)和TPMC (OR = 0.428, 95%CI:0.392-0.466),危险因素-女性BMI (OR = 1.268, 95%CI:1.191-1.351)和DFI (OR = 1.362, 95%CI:1.274-1.455)。经内部验证,nomogram具有中高判别能力(C-index = 0.722, 95%CI:0.667 ~ 0.773)。决策曲线分析证实了阈值概率在0.05和0.60之间的临床效用。结论:基于logistic回归的预测模型在评估c-IVF受精失败风险方面表现出稳健的性能。虽然针对本中心的特定临床环境进行了优化,但需要外部多中心验证来确认更广泛的临床适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Ovarian Research
Journal of Ovarian Research REPRODUCTIVE BIOLOGY-
CiteScore
6.20
自引率
2.50%
发文量
125
审稿时长
>12 weeks
期刊介绍: Journal of Ovarian Research is an open access, peer reviewed, online journal that aims to provide a forum for high-quality basic and clinical research on ovarian function, abnormalities, and cancer. The journal focuses on research that provides new insights into ovarian functions as well as prevention and treatment of diseases afflicting the organ. Topical areas include, but are not restricted to: Ovary development, hormone secretion and regulation Follicle growth and ovulation Infertility and Polycystic ovarian syndrome Regulation of pituitary and other biological functions by ovarian hormones Ovarian cancer, its prevention, diagnosis and treatment Drug development and screening Role of stem cells in ovary development and function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信