A synthetic HS structure selectively impairs the morphology and function of excitatory synapse by disrupting neurexin1 interactions.

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Qin Xu, Leanne Auyeung, Zhangjie Wang, Yongmei Xu, Jian Liu, Peng Zhang
{"title":"A synthetic HS structure selectively impairs the morphology and function of excitatory synapse by disrupting neurexin1 interactions.","authors":"Qin Xu, Leanne Auyeung, Zhangjie Wang, Yongmei Xu, Jian Liu, Peng Zhang","doi":"10.1093/glycob/cwaf039","DOIUrl":null,"url":null,"abstract":"<p><p>Excitatory and inhibitory synapses are the two major fundamental units of neuronal communication in the brain. The imbalance between excitatory and inhibitory synapses (E/I imbalance) is a leading mechanism underlying mental illness. Heparan sulfate (HS), a complex polysaccharide frequently implicated in mental disorders, is an emergent player in synaptic function. Yet, it remains unclear whether and how HS plays a preferential role in excitatory versus inhibitory synapses. This question is further complicated by the structural complexity of HS and the combined effects of both HS glycans and their attached proteoglycans. To address this challenge, we developed a platform that combines synthetic chemistry and synaptic biology to dissect the role of pure HS glycans in synapse development. As proof of principle, we assessed the effects of a synthetic dodecasaccharide (12-mer-19) and its non-sulfated counterpart (12-mer-NAc) on excitatory and inhibitory synapses in primary rat hippocampal neuron cultures. Unexpectedly, we found that 12-mer-19 selectively impaired the morphology and function of excitatory but not inhibitory synapses. Mechanistically, 12-mer-19 interferes with the interaction between neurexin1 and its partners at excitatory synapses, but has little effect on neurexin1's partner at inhibitory synapses. Moreover, 12-mer-NAc didn't have such effects, highlighting the importance of sulfated groups. Our results suggest that extracellular complex glycans may have a selective yet underappreciated role in excitatory synapses, perhaps contributing to the E/I imbalance. Moreover, current studies lay a foundation for future work to dissect the contribution of specific heparan sulfate structures to synaptic morphology and function.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/glycob/cwaf039","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Excitatory and inhibitory synapses are the two major fundamental units of neuronal communication in the brain. The imbalance between excitatory and inhibitory synapses (E/I imbalance) is a leading mechanism underlying mental illness. Heparan sulfate (HS), a complex polysaccharide frequently implicated in mental disorders, is an emergent player in synaptic function. Yet, it remains unclear whether and how HS plays a preferential role in excitatory versus inhibitory synapses. This question is further complicated by the structural complexity of HS and the combined effects of both HS glycans and their attached proteoglycans. To address this challenge, we developed a platform that combines synthetic chemistry and synaptic biology to dissect the role of pure HS glycans in synapse development. As proof of principle, we assessed the effects of a synthetic dodecasaccharide (12-mer-19) and its non-sulfated counterpart (12-mer-NAc) on excitatory and inhibitory synapses in primary rat hippocampal neuron cultures. Unexpectedly, we found that 12-mer-19 selectively impaired the morphology and function of excitatory but not inhibitory synapses. Mechanistically, 12-mer-19 interferes with the interaction between neurexin1 and its partners at excitatory synapses, but has little effect on neurexin1's partner at inhibitory synapses. Moreover, 12-mer-NAc didn't have such effects, highlighting the importance of sulfated groups. Our results suggest that extracellular complex glycans may have a selective yet underappreciated role in excitatory synapses, perhaps contributing to the E/I imbalance. Moreover, current studies lay a foundation for future work to dissect the contribution of specific heparan sulfate structures to synaptic morphology and function.

合成的HS结构通过破坏神经蛋白1的相互作用选择性地损害兴奋性突触的形态和功能。
兴奋性突触和抑制性突触是大脑中神经元通讯的两个主要基本单位。兴奋性和抑制性突触之间的失衡(E/I失衡)是精神疾病的主要机制。硫酸乙酰肝素(HS)是一种复杂的多糖,经常与精神障碍有关,在突触功能中是一个新兴的参与者。然而,尚不清楚HS是否以及如何在兴奋性突触和抑制性突触中发挥优先作用。由于HS结构的复杂性以及HS聚糖及其附着的蛋白聚糖的综合作用,使这个问题进一步复杂化。为了应对这一挑战,我们开发了一个结合合成化学和突触生物学的平台来剖析纯HS聚糖在突触发育中的作用。作为原理证明,我们评估了合成十二糖(12-mer-19)及其非硫酸化对偶物(12-mer-NAc)对原代大鼠海马神经元培养中兴奋性和抑制性突触的影响。出乎意料的是,我们发现12-mer-19选择性地损害了兴奋性突触的形态和功能,而不是抑制性突触。从机制上讲,12-mer-19干扰了兴奋性突触上neurexin1及其伙伴之间的相互作用,但对抑制性突触上neurexin1的伙伴几乎没有影响。此外,12-mer-NAc没有这样的影响,突出了硫酸盐基团的重要性。我们的研究结果表明,胞外复合物聚糖可能在兴奋性突触中具有选择性但未被充分认识的作用,可能导致E/I失衡。此外,目前的研究为进一步研究特定硫酸肝素结构对突触形态和功能的贡献奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Glycobiology
Glycobiology 生物-生化与分子生物学
CiteScore
7.50
自引率
4.70%
发文量
73
审稿时长
3 months
期刊介绍: Established as the leading journal in the field, Glycobiology provides a unique forum dedicated to research into the biological functions of glycans, including glycoproteins, glycolipids, proteoglycans and free oligosaccharides, and on proteins that specifically interact with glycans (including lectins, glycosyltransferases, and glycosidases). Glycobiology is essential reading for researchers in biomedicine, basic science, and the biotechnology industries. By providing a single forum, the journal aims to improve communication between glycobiologists working in different disciplines and to increase the overall visibility of the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信