{"title":"Theaflavins enhances laying hen production performance and egg antioxidant capacity via improving antioxidant status and regulating lipid metabolism.","authors":"Ling Zhou, Pinyao Zhao, Jinwei Zhang, Jie Zhong, Yulin Rao, Jia Tang, Longsheng Jiang, Fen Chen, Lijuan Chen, Keying Zhang, Weimin Ouyang, Jialong Peng","doi":"10.3389/fvets.2025.1566580","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Theaflavins (TF), natural compounds extracted from black tea, demonstrate various beneficial functions including antioxidant properties and lipid metabolism regulation. However, their effects on laying hens remained unclear. This study investigated the effects of different TF levels on production performance, egg quality, antioxidant capacity, lipid metabolism in laying hens, and egg antioxidant capacity.</p><p><strong>Methods: </strong>A total of 512 twenty-nine-week-old Lohmann commercial laying hens were randomly divided into four dietary treatments (0, 250, 500, or 1000 mg/kg TF) in a completely randomized design. Each treatment consisted of eight replicates of 16 birds, and the experiment lasted for 8 weeks. Data were analyzed using one-way analysis of variance (ANOVA) followed by Duncan's multiple range test, with quadratic polynomial contrasts applied to evaluate dose-response relationships.</p><p><strong>Results: </strong>Results showed that TF supplementation quadratically increased (<i>p</i> < 0.05) egg production, egg yolk color, serum total antioxidant capacity (T-AOC), hepatic T-AOC, uterine T-AOC, hepatic superoxide dismutase activity, serum total cholesterol (TC), hepatic TC, hepatic triglycerides, and the expression of antioxidant-related and lipid metabolism-related genes. It also enhanced the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity, T-AOC, tyrosine, and tryptophan levels in egg yolks. TF supplementation significantly decreased (<i>p</i> < 0.05) malondialdehyde (MDA) levels in serum, liver, ovaries, and egg yolks.</p><p><strong>Conclusion: </strong>These findings suggest that TF improves laying performance by enhancing antioxidant capacity and regulating lipid metabolism, while simultaneously boosting egg antioxidant potential. Based on the quadratic regression analysis, the optimal TF supplementation level was determined to be 500 mg/kg.</p>","PeriodicalId":12772,"journal":{"name":"Frontiers in Veterinary Science","volume":"12 ","pages":"1566580"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12218247/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Veterinary Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3389/fvets.2025.1566580","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Theaflavins (TF), natural compounds extracted from black tea, demonstrate various beneficial functions including antioxidant properties and lipid metabolism regulation. However, their effects on laying hens remained unclear. This study investigated the effects of different TF levels on production performance, egg quality, antioxidant capacity, lipid metabolism in laying hens, and egg antioxidant capacity.
Methods: A total of 512 twenty-nine-week-old Lohmann commercial laying hens were randomly divided into four dietary treatments (0, 250, 500, or 1000 mg/kg TF) in a completely randomized design. Each treatment consisted of eight replicates of 16 birds, and the experiment lasted for 8 weeks. Data were analyzed using one-way analysis of variance (ANOVA) followed by Duncan's multiple range test, with quadratic polynomial contrasts applied to evaluate dose-response relationships.
Results: Results showed that TF supplementation quadratically increased (p < 0.05) egg production, egg yolk color, serum total antioxidant capacity (T-AOC), hepatic T-AOC, uterine T-AOC, hepatic superoxide dismutase activity, serum total cholesterol (TC), hepatic TC, hepatic triglycerides, and the expression of antioxidant-related and lipid metabolism-related genes. It also enhanced the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity, T-AOC, tyrosine, and tryptophan levels in egg yolks. TF supplementation significantly decreased (p < 0.05) malondialdehyde (MDA) levels in serum, liver, ovaries, and egg yolks.
Conclusion: These findings suggest that TF improves laying performance by enhancing antioxidant capacity and regulating lipid metabolism, while simultaneously boosting egg antioxidant potential. Based on the quadratic regression analysis, the optimal TF supplementation level was determined to be 500 mg/kg.
期刊介绍:
Frontiers in Veterinary Science is a global, peer-reviewed, Open Access journal that bridges animal and human health, brings a comparative approach to medical and surgical challenges, and advances innovative biotechnology and therapy.
Veterinary research today is interdisciplinary, collaborative, and socially relevant, transforming how we understand and investigate animal health and disease. Fundamental research in emerging infectious diseases, predictive genomics, stem cell therapy, and translational modelling is grounded within the integrative social context of public and environmental health, wildlife conservation, novel biomarkers, societal well-being, and cutting-edge clinical practice and specialization. Frontiers in Veterinary Science brings a 21st-century approach—networked, collaborative, and Open Access—to communicate this progress and innovation to both the specialist and to the wider audience of readers in the field.
Frontiers in Veterinary Science publishes articles on outstanding discoveries across a wide spectrum of translational, foundational, and clinical research. The journal''s mission is to bring all relevant veterinary sciences together on a single platform with the goal of improving animal and human health.