Toward a role for the acoustic field in cells interaction.

IF 3.1 4区 医学 Q2 NEUROSCIENCES
Frontiers in Systems Neuroscience Pub Date : 2025-06-18 eCollection Date: 2025-01-01 DOI:10.3389/fnsys.2025.1484769
Marco Girasole, Pier Francesco Moretti, Angela Di Giannatale, Virginia Di Paolo, Angela Galardi, Silvia Lampis, Simone Dinarelli, Giovanni Longo
{"title":"Toward a role for the acoustic field in cells interaction.","authors":"Marco Girasole, Pier Francesco Moretti, Angela Di Giannatale, Virginia Di Paolo, Angela Galardi, Silvia Lampis, Simone Dinarelli, Giovanni Longo","doi":"10.3389/fnsys.2025.1484769","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoscale motility of cells is a fundamental phenomenon, closely associated with biological status and response to environmental solicitations, whose investigation has disclosed new perspectives for the comprehension of cell behavior and fate. To investigate intracellular interactions, we designed an experiment to monitor movements of clusters of neuroblastoma cells (SH-SY5Y) growing on a nanomechanical oscillator (nanomotion sensor) suspended few hundreds of microns over the surface of a Petri dish where other neuroblastoma cells are freely moving. We observed that the free-to-move cells feel the presence of cells on the nearby nanosensor (at a distance of up to 300 microns) and migrate toward them, even in presence of environmental hampering factors, such as medium microflows. The interaction is bidirectional since, as evidenced by nanomotion sensing, the cells on the sensor enhance their motion when clusters of freely moving cells approach. Considering the geometry and environmental context, our observations extend beyond what can be explained by sensing of chemical trackers, suggesting the presence of other physical mechanisms. We hypothesize that the acoustic field generated by cell vibrations can have a role in the initial recognition between distant clusters. Integrating our findings with a suitable wave propagation model, we show that mechanical waves produced by cellular activity have sufficient energy to trigger mechanotransduction in target cells hundreds of microns away. This interaction can explain the observed distance-dependent patterns of cellular migration and motion alteration. Our results suggest that acoustic fields generated by cells can mediate cell-cell interaction and contribute to signaling and communication.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"19 ","pages":"1484769"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12213812/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Systems Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnsys.2025.1484769","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoscale motility of cells is a fundamental phenomenon, closely associated with biological status and response to environmental solicitations, whose investigation has disclosed new perspectives for the comprehension of cell behavior and fate. To investigate intracellular interactions, we designed an experiment to monitor movements of clusters of neuroblastoma cells (SH-SY5Y) growing on a nanomechanical oscillator (nanomotion sensor) suspended few hundreds of microns over the surface of a Petri dish where other neuroblastoma cells are freely moving. We observed that the free-to-move cells feel the presence of cells on the nearby nanosensor (at a distance of up to 300 microns) and migrate toward them, even in presence of environmental hampering factors, such as medium microflows. The interaction is bidirectional since, as evidenced by nanomotion sensing, the cells on the sensor enhance their motion when clusters of freely moving cells approach. Considering the geometry and environmental context, our observations extend beyond what can be explained by sensing of chemical trackers, suggesting the presence of other physical mechanisms. We hypothesize that the acoustic field generated by cell vibrations can have a role in the initial recognition between distant clusters. Integrating our findings with a suitable wave propagation model, we show that mechanical waves produced by cellular activity have sufficient energy to trigger mechanotransduction in target cells hundreds of microns away. This interaction can explain the observed distance-dependent patterns of cellular migration and motion alteration. Our results suggest that acoustic fields generated by cells can mediate cell-cell interaction and contribute to signaling and communication.

探讨声场在细胞相互作用中的作用。
细胞的纳米尺度运动是一种基本现象,与生物状态和对环境要求的反应密切相关,其研究为理解细胞行为和命运提供了新的视角。为了研究细胞内相互作用,我们设计了一个实验来监测生长在纳米机械振荡器(纳米运动传感器)上的神经母细胞瘤细胞簇(SH-SY5Y)的运动,该振荡器悬浮在培养皿表面数百微米以上,而其他神经母细胞瘤细胞在培养皿表面自由移动。我们观察到,自由移动的细胞感觉到附近纳米传感器上的细胞的存在(距离高达300微米),并向它们迁移,即使存在环境阻碍因素,如介质微流。这种相互作用是双向的,因为正如纳米运动传感所证明的那样,当自由运动的细胞群靠近时,传感器上的细胞会增强它们的运动。考虑到几何形状和环境背景,我们的观察超出了化学跟踪器的传感所能解释的范围,表明存在其他物理机制。我们假设细胞振动产生的声场可以在远距离集群之间的初始识别中发挥作用。将我们的发现与合适的波传播模型相结合,我们表明细胞活动产生的机械波有足够的能量在数百微米外的靶细胞中触发机械转导。这种相互作用可以解释观察到的细胞迁移和运动改变的距离依赖模式。我们的研究结果表明,细胞产生的声场可以介导细胞间的相互作用,并有助于信号传导和通信。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Systems Neuroscience
Frontiers in Systems Neuroscience Neuroscience-Developmental Neuroscience
CiteScore
6.00
自引率
3.30%
发文量
144
审稿时长
14 weeks
期刊介绍: Frontiers in Systems Neuroscience publishes rigorously peer-reviewed research that advances our understanding of whole systems of the brain, including those involved in sensation, movement, learning and memory, attention, reward, decision-making, reasoning, executive functions, and emotions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信