{"title":"A multilayer deep neural network framework for hemodynamic assessment of cognitive load management during problem-solving tasks.","authors":"Priyanka Paul, Shaoni Banerjee, Apurba Nandi, Avik Kumar Das, Arijeet Ghosh","doi":"10.1007/s11571-025-10292-4","DOIUrl":null,"url":null,"abstract":"<p><p>Cognitive load refers to the mental effort required to process information and perform tasks, significantly influencing learning and performance outcomes. This paper presents a novel approach for cognitive load classification using a hybrid model that integrates Long Short-Term Memory (LSTM) networks with the Block Attention Module (BAM). Leveraging functional Near-Infrared Spectroscopy (fNIRS), we investigate the relationship between cognitive load and brain activity in a controlled experimental setting. Our methodology encompasses data collection from 50 participants engaged in various problem-solving tasks, with cognitive load categorized as high, medium, or low. The acquired fNIRS data underwent a rigorous preprocessing pipeline, including normalization and wavelet transform for feature extraction, enabling a comprehensive analysis of hemodynamic responses. The proposed model employs BAM to enhance feature representation by refining the importance of spatial and channel dimensions, thus improving the LSTM's ability to capture temporal dependencies in the data. The experimental results demonstrate significant performance improvements in cognitive load classification, showcasing the efficacy of the integrated LSTM-BAM architecture. This work not only contributes to the understanding of cognitive load dynamics but also highlights the potential of fNIRS as a non-invasive tool for real-time monitoring of cognitive performance, paving the way for advancements in instructional design and cognitive research.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"104"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12209089/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10292-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cognitive load refers to the mental effort required to process information and perform tasks, significantly influencing learning and performance outcomes. This paper presents a novel approach for cognitive load classification using a hybrid model that integrates Long Short-Term Memory (LSTM) networks with the Block Attention Module (BAM). Leveraging functional Near-Infrared Spectroscopy (fNIRS), we investigate the relationship between cognitive load and brain activity in a controlled experimental setting. Our methodology encompasses data collection from 50 participants engaged in various problem-solving tasks, with cognitive load categorized as high, medium, or low. The acquired fNIRS data underwent a rigorous preprocessing pipeline, including normalization and wavelet transform for feature extraction, enabling a comprehensive analysis of hemodynamic responses. The proposed model employs BAM to enhance feature representation by refining the importance of spatial and channel dimensions, thus improving the LSTM's ability to capture temporal dependencies in the data. The experimental results demonstrate significant performance improvements in cognitive load classification, showcasing the efficacy of the integrated LSTM-BAM architecture. This work not only contributes to the understanding of cognitive load dynamics but also highlights the potential of fNIRS as a non-invasive tool for real-time monitoring of cognitive performance, paving the way for advancements in instructional design and cognitive research.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.