Yao Liu, Zujun Que, Tianqi An, Zhipeng Zhang, Jianhui Tian
{"title":"Mitigating Tumor Recurrence through Mitochondrial Metabolism Inhibition: A Novel NIR Laser-Induced Therapeutic Strategy.","authors":"Yao Liu, Zujun Que, Tianqi An, Zhipeng Zhang, Jianhui Tian","doi":"10.1186/s12575-025-00283-4","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor recurrence driven by mitochondrial hypermetabolism remains a critical challenge in cancer therapy, as aberrant energy metabolism fuels therapeutic resistance and disease progression. We aimed to develop a multifunctional nanoplatform combining mitochondrial metabolism inhibition, photothermal therapy, and controlled chemotherapy to overcome tumor recurrence mechanisms. Biodegradable polydopamine nanoparticles (PDA-DOX-CO NPs) were engineered via molecular self-assembly, co-loading doxorubicin (DOX) and a carbon monoxide (CO) prodrug. The PDA-DOX-CO NPs demonstrated three synergistic therapeutic effects: (1) Photothermal ablation (48.38 °C tumor hyperthermia), (2) CO-mediated mitochondrial suppression, and (3) Spatiotemporally controlled DOX release. In HCT-116 tumor models, PDA-DOX-CO NPs with NIR irradiation induced 60% tumor complete ablation. Histopathological analysis confirmed significant apoptosis induction and mitochondrial morphology alterations in treated tumors. This \"metabolic blockade + energy depletion + precision delivery\" paradigm provides a synergistic solution to tumor recurrence, demonstrating enhanced therapeutic efficacy and biosafety through mitochondrial-targeted multimodal action.</p>","PeriodicalId":8960,"journal":{"name":"Biological Procedures Online","volume":"27 1","pages":"24"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12219048/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Procedures Online","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12575-025-00283-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor recurrence driven by mitochondrial hypermetabolism remains a critical challenge in cancer therapy, as aberrant energy metabolism fuels therapeutic resistance and disease progression. We aimed to develop a multifunctional nanoplatform combining mitochondrial metabolism inhibition, photothermal therapy, and controlled chemotherapy to overcome tumor recurrence mechanisms. Biodegradable polydopamine nanoparticles (PDA-DOX-CO NPs) were engineered via molecular self-assembly, co-loading doxorubicin (DOX) and a carbon monoxide (CO) prodrug. The PDA-DOX-CO NPs demonstrated three synergistic therapeutic effects: (1) Photothermal ablation (48.38 °C tumor hyperthermia), (2) CO-mediated mitochondrial suppression, and (3) Spatiotemporally controlled DOX release. In HCT-116 tumor models, PDA-DOX-CO NPs with NIR irradiation induced 60% tumor complete ablation. Histopathological analysis confirmed significant apoptosis induction and mitochondrial morphology alterations in treated tumors. This "metabolic blockade + energy depletion + precision delivery" paradigm provides a synergistic solution to tumor recurrence, demonstrating enhanced therapeutic efficacy and biosafety through mitochondrial-targeted multimodal action.
期刊介绍:
iological Procedures Online publishes articles that improve access to techniques and methods in the medical and biological sciences.
We are also interested in short but important research discoveries, such as new animal disease models.
Topics of interest include, but are not limited to:
Reports of new research techniques and applications of existing techniques
Technical analyses of research techniques and published reports
Validity analyses of research methods and approaches to judging the validity of research reports
Application of common research methods
Reviews of existing techniques
Novel/important product information
Biological Procedures Online places emphasis on multidisciplinary approaches that integrate methodologies from medicine, biology, chemistry, imaging, engineering, bioinformatics, computer science, and systems analysis.