Saifullah Jamali, Hongbo Fu, Mengyang Zhang, Huadong Wang, Nek Muhammad Shaikh, Bian Wu, Baddar Ul Ddin Jamali, Feifan Shi, Zongling Ding, Yuzhu Liu, Zhirong Zhang
{"title":"Dual Mode Fusion Based on Rock Images and Laser-Induced Breakdown Spectroscopy to Improve the Accuracy of Discriminant Analysis.","authors":"Saifullah Jamali, Hongbo Fu, Mengyang Zhang, Huadong Wang, Nek Muhammad Shaikh, Bian Wu, Baddar Ul Ddin Jamali, Feifan Shi, Zongling Ding, Yuzhu Liu, Zhirong Zhang","doi":"10.1177/00037028251349524","DOIUrl":null,"url":null,"abstract":"<p><p>Rocks are an extremely important and indispensable part of the Earth's crust, with wide applications in various fields such as geology, environmental monitoring, and industry. Traditional methods often rely on a single analytical technique or visual inspection, but this may not achieve the accuracy required for thorough classification. Laser-induced breakdown spectroscopy (LIBS) technology mainly provides information on the composition and content of rock elements, while images can provide appearance information such as color and texture. The multilayer perceptron (MLP) and DenseNet121 models were selected for processing preprocessed LIBS and image data, respectively. When using LIBS and images separately for classification, the accuracy rates were 93.63% and 90.90%, respectively. However, after fusing the bimodal data using LIBS and images, we achieved a significant performance improvement of 97.27% in accuracy. This study indicates that advanced neural network models can effectively integrate LIBS and image data and improve the performance of rock classification.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1455-1464"},"PeriodicalIF":2.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028251349524","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Rocks are an extremely important and indispensable part of the Earth's crust, with wide applications in various fields such as geology, environmental monitoring, and industry. Traditional methods often rely on a single analytical technique or visual inspection, but this may not achieve the accuracy required for thorough classification. Laser-induced breakdown spectroscopy (LIBS) technology mainly provides information on the composition and content of rock elements, while images can provide appearance information such as color and texture. The multilayer perceptron (MLP) and DenseNet121 models were selected for processing preprocessed LIBS and image data, respectively. When using LIBS and images separately for classification, the accuracy rates were 93.63% and 90.90%, respectively. However, after fusing the bimodal data using LIBS and images, we achieved a significant performance improvement of 97.27% in accuracy. This study indicates that advanced neural network models can effectively integrate LIBS and image data and improve the performance of rock classification.
期刊介绍:
Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”