Xueqiang Wu , Xuyang Pu , Yinmei Zhang , Heming Wu , Zhikang Yu , Wei He , Yibiao Chen
{"title":"A nucleic acid-based strategy for highly specific discrimination between mutant and wild-type sequences","authors":"Xueqiang Wu , Xuyang Pu , Yinmei Zhang , Heming Wu , Zhikang Yu , Wei He , Yibiao Chen","doi":"10.1016/j.ab.2025.115930","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel Terminal Self-Competitive Nucleic Acid Probe (TSCP) for rapid, precise detection of mutant and wild-type gene sequences. The TSCP probe employs overlapping binding domains and inhibition strands, enabling highly specific competitive hybridization. Combined with hybridization chain reaction (HCR) for signal amplification, the method achieves nanomolar sensitivity without requiring proteases, temperature control, or complex instrumentation. Experimental validation in blood samples demonstrated distinct fluorescent signals for mutant and wild-type sequences, allowing accurate target differentiation. The probe is cost-effective and scalable, as it only requires nucleic acid synthesis for new mutations, ensuring rapid adaptation to emerging variants. This straightforward, versatile approach facilitates simultaneous detection of genetic variations, making it highly suitable for molecular diagnostics and genetic research. Its high specificity, rapid response, and low-cost production underscore its potential as a practical tool for advancing mutation detection in clinical and research settings. By eliminating the need for specialized equipment and enabling quick deployment, the TSCP-based method offers a widely accessible solution for identifying genetic mutations, enhancing both diagnostic accuracy and research efficiency.</div></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"705 ","pages":"Article 115930"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269725001691","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel Terminal Self-Competitive Nucleic Acid Probe (TSCP) for rapid, precise detection of mutant and wild-type gene sequences. The TSCP probe employs overlapping binding domains and inhibition strands, enabling highly specific competitive hybridization. Combined with hybridization chain reaction (HCR) for signal amplification, the method achieves nanomolar sensitivity without requiring proteases, temperature control, or complex instrumentation. Experimental validation in blood samples demonstrated distinct fluorescent signals for mutant and wild-type sequences, allowing accurate target differentiation. The probe is cost-effective and scalable, as it only requires nucleic acid synthesis for new mutations, ensuring rapid adaptation to emerging variants. This straightforward, versatile approach facilitates simultaneous detection of genetic variations, making it highly suitable for molecular diagnostics and genetic research. Its high specificity, rapid response, and low-cost production underscore its potential as a practical tool for advancing mutation detection in clinical and research settings. By eliminating the need for specialized equipment and enabling quick deployment, the TSCP-based method offers a widely accessible solution for identifying genetic mutations, enhancing both diagnostic accuracy and research efficiency.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.