{"title":"Large differences between UK black carbon emission factors.","authors":"Adam Brighty, Iain Staffell, Helen ApSimon","doi":"10.1186/s13021-025-00306-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Black carbon (BC) is a pollutant that illustrates strong links between climate warming and adverse health effects from air pollution. No standardised measurement technique for BC emissions has been implemented, making emissions and estimates highly uncertain. In this study, we evaluate two UK-based BC emission factor databases calculated using two distinct.</p><p><strong>Methods: </strong>the National Atmospheric Emissions Inventory (NAEI) and the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model database from IIASA. The scope of this investigation was limited to the 1 A (Fuel Consumption) NFR code, which comprised the largest BC-emitting activities in the UK. Comparisons were made between a reference NAEI value and a range of low (e.g., highest abatement, newest technology), medium, and high GAINS emission factors. The NAEI value sat outside the GAINS BC ranges across 64% of the selected 1 A sources, most evidently within industrial combustion. By comparison, PM<sub>2.5</sub> and NO<sub>x</sub> emission factors within the same databases showed less frequent disagreement, with 26% and 46%, respectively, of the GAINS sources not overlapping with the NAEI reference. A complementary BC emissions estimate, using NAEI activity data, found the highest variance in emissions to be within industrial, domestic, and agricultural combustion sources. Overall, this paper highlights the need to understand the differences behind these BC emission factors and to bring them into closer alignment.</p>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"20 1","pages":"19"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s13021-025-00306-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Black carbon (BC) is a pollutant that illustrates strong links between climate warming and adverse health effects from air pollution. No standardised measurement technique for BC emissions has been implemented, making emissions and estimates highly uncertain. In this study, we evaluate two UK-based BC emission factor databases calculated using two distinct.
Methods: the National Atmospheric Emissions Inventory (NAEI) and the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model database from IIASA. The scope of this investigation was limited to the 1 A (Fuel Consumption) NFR code, which comprised the largest BC-emitting activities in the UK. Comparisons were made between a reference NAEI value and a range of low (e.g., highest abatement, newest technology), medium, and high GAINS emission factors. The NAEI value sat outside the GAINS BC ranges across 64% of the selected 1 A sources, most evidently within industrial combustion. By comparison, PM2.5 and NOx emission factors within the same databases showed less frequent disagreement, with 26% and 46%, respectively, of the GAINS sources not overlapping with the NAEI reference. A complementary BC emissions estimate, using NAEI activity data, found the highest variance in emissions to be within industrial, domestic, and agricultural combustion sources. Overall, this paper highlights the need to understand the differences behind these BC emission factors and to bring them into closer alignment.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.