A magnetic hydrogel adsorbent bead containing hyper-crosslinked polymer-decorated graphene oxide for the dispersive liquid-solid phase extraction of phenylurea herbicides.
{"title":"A magnetic hydrogel adsorbent bead containing hyper-crosslinked polymer-decorated graphene oxide for the dispersive liquid-solid phase extraction of phenylurea herbicides.","authors":"Suppawan Sillapawisut, Piyaluk Nurerk, Opas Bunkoed","doi":"10.1016/j.talanta.2025.128538","DOIUrl":null,"url":null,"abstract":"<p><p>A porous magnetic composite adsorbent was developed by incorporating hyper-crosslinked polymer-decorated graphene oxide (Fe<sub>3</sub>O<sub>4</sub>@HCP-GO) into alginate hydrogel beads, forming Fe<sub>3</sub>O<sub>4</sub>@HCP-GO alginate beads. For the first time, this unique hierarchical structure combining magnetic responsiveness, high surface area, and multiple adsorption mechanisms was engineered for the efficient extraction of phenylurea herbicides (PUHs). The material was applied in a dispersive liquid-solid phase extraction (DLSPE) process, enabling the simultaneous adsorption of six PUHs through hydrogen bonding, hydrophobic, and π-π interactions. The extracted PUHs were determined by high performance liquid chromatography. The fabricated porous adsorbent was characterized, and the extraction conditions were optimized. Under optimal conditions, the developed method exhibited linearity from 5.0 to 100 μg L<sup>-1</sup> for metoxuron, monuron, chlortoluron and buturon, and from 10 to 100 μg L<sup>-1</sup> for isoproturon and monolinuron. The limits of detection were between 1.0 and 3.0 μg L<sup>-1</sup>. The developed adsorbent was utilized to extract PUHs from rice, cucumber and tomato, achieving recoveries ranging from 70.2 to 96.7 % with RSDs below 9.0 %. The fabricated porous magnetic composite hydrogel bead exhibited good stability and efficiency for up to 6 cycles of extraction and desorption.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"296 ","pages":"128538"},"PeriodicalIF":6.1000,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.128538","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A porous magnetic composite adsorbent was developed by incorporating hyper-crosslinked polymer-decorated graphene oxide (Fe3O4@HCP-GO) into alginate hydrogel beads, forming Fe3O4@HCP-GO alginate beads. For the first time, this unique hierarchical structure combining magnetic responsiveness, high surface area, and multiple adsorption mechanisms was engineered for the efficient extraction of phenylurea herbicides (PUHs). The material was applied in a dispersive liquid-solid phase extraction (DLSPE) process, enabling the simultaneous adsorption of six PUHs through hydrogen bonding, hydrophobic, and π-π interactions. The extracted PUHs were determined by high performance liquid chromatography. The fabricated porous adsorbent was characterized, and the extraction conditions were optimized. Under optimal conditions, the developed method exhibited linearity from 5.0 to 100 μg L-1 for metoxuron, monuron, chlortoluron and buturon, and from 10 to 100 μg L-1 for isoproturon and monolinuron. The limits of detection were between 1.0 and 3.0 μg L-1. The developed adsorbent was utilized to extract PUHs from rice, cucumber and tomato, achieving recoveries ranging from 70.2 to 96.7 % with RSDs below 9.0 %. The fabricated porous magnetic composite hydrogel bead exhibited good stability and efficiency for up to 6 cycles of extraction and desorption.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.