TaIRE1-mediated unconventional splicing of the TabZIP60 mRNA and the miR172 precursor regulates heat stress tolerance in wheat.

IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Haoran Li, Zhen Qin, Xiaoli Geng, Jie Cao, Xinyang Yuan, Huiru Peng, Yingyin Yao, Zhaorong Hu, Weilong Guo, Yumei Zhang, Jie Liu, Vincenzo Rossi, Ive De Smet, Zhongfu Ni, Qixin Sun, Mingming Xin
{"title":"TaIRE1-mediated unconventional splicing of the TabZIP60 mRNA and the miR172 precursor regulates heat stress tolerance in wheat.","authors":"Haoran Li, Zhen Qin, Xiaoli Geng, Jie Cao, Xinyang Yuan, Huiru Peng, Yingyin Yao, Zhaorong Hu, Weilong Guo, Yumei Zhang, Jie Liu, Vincenzo Rossi, Ive De Smet, Zhongfu Ni, Qixin Sun, Mingming Xin","doi":"10.1111/jipb.13963","DOIUrl":null,"url":null,"abstract":"<p><p>INOSITOL-REQUIRING ENZYME 1 (IRE1) is conserved in plants and mammals to regulate stress responses. Here, we found that TaIRE1 is involved in the unconventional splicing of cell membrane-localized TabZIP60 messenger RNA (mRNA), which results in a nucleus resident protein form (TabZIP60s), and enhanced heat stress tolerance. Transcriptome analysis together with binding element prediction revealed 121 high-confidence targets of TabZIP60s responsive to heat stress in wheat (Triticum aestivum), including heat shock protein genes. Interestingly, we found that an asparagine to glutamic acid substitution, located next to DNA-binding domain of TabZIP60s, results in reduced binding affinity and transcriptional activity to downstream targets, and this heat stress tolerance inferior allele was positively selected during modern wheat breeding programs in China, possibly due to their negative effects on yield potential. Finally, we showed that TaIRE1 is also responsible for the mis-cleavage of miR172 precursors, and consequently contribute to heat stress tolerance. To the best of our knowledge, this represents the first report showing that, like in mammals, IRE1 also regulates miRNA cleavage in response to heat stress in plants. Together, this coordinate control of two signaling pathways provides new insights into heat stress tolerance regulation in wheat.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.13963","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

INOSITOL-REQUIRING ENZYME 1 (IRE1) is conserved in plants and mammals to regulate stress responses. Here, we found that TaIRE1 is involved in the unconventional splicing of cell membrane-localized TabZIP60 messenger RNA (mRNA), which results in a nucleus resident protein form (TabZIP60s), and enhanced heat stress tolerance. Transcriptome analysis together with binding element prediction revealed 121 high-confidence targets of TabZIP60s responsive to heat stress in wheat (Triticum aestivum), including heat shock protein genes. Interestingly, we found that an asparagine to glutamic acid substitution, located next to DNA-binding domain of TabZIP60s, results in reduced binding affinity and transcriptional activity to downstream targets, and this heat stress tolerance inferior allele was positively selected during modern wheat breeding programs in China, possibly due to their negative effects on yield potential. Finally, we showed that TaIRE1 is also responsible for the mis-cleavage of miR172 precursors, and consequently contribute to heat stress tolerance. To the best of our knowledge, this represents the first report showing that, like in mammals, IRE1 also regulates miRNA cleavage in response to heat stress in plants. Together, this coordinate control of two signaling pathways provides new insights into heat stress tolerance regulation in wheat.

taire1介导的TabZIP60 mRNA和miR172前体的非常规剪接调节小麦的耐热性。
肌醇要求酶1 (IRE1)在植物和哺乳动物中是保守的,用于调节应激反应。在这里,我们发现TaIRE1参与了细胞膜定位的TabZIP60信使RNA (mRNA)的非常规剪接,从而产生一种核驻留蛋白(TabZIP60s),并增强了耐热性。转录组分析和结合元件预测揭示了小麦(Triticum aestivum)热胁迫响应TabZIP60s的121个高信度靶点,包括热休克蛋白基因。有趣的是,我们发现一个位于TabZIP60s dna结合区域附近的天冬酰胺-谷氨酸替代基因,会导致对下游靶标的结合亲和力和转录活性降低,这个耐热性较差的等位基因在中国现代小麦育种项目中被积极选择,可能是由于它们对产量潜力的负面影响。最后,我们发现TaIRE1也负责miR172前体的错误切割,从而有助于耐热性。据我们所知,这是第一个报告表明,IRE1在植物中也调节miRNA切割以应对热应激,就像在哺乳动物中一样。总之,这两个信号通路的协调控制为小麦耐热性调控提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Integrative Plant Biology
Journal of Integrative Plant Biology 生物-生化与分子生物学
CiteScore
18.00
自引率
5.30%
发文量
220
审稿时长
3 months
期刊介绍: Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信